Câu hỏi:

19/10/2025 4 Lưu

Đồ thị hàm số nào sau đây có dạng như đường cong trong hình vẽ?

index_html_2f9357a3fa837653.png

A.

\(y = {x^3} - 3x + 1\).

B.

\(y = \frac{{x - 2}}{{x + 1}}\).

C.

\(y = 2{x^4} + {x^2} + 1\).

D.

\(y = \frac{{x + 2}}{{x + 1}}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đây là đồ thị hàm số dạng phân thức hữu tỉ.

Đồ thị hàm số cắt trục tung tại điểm \(\left( {0;2} \right)\). Do đó \(y = \frac{{x + 2}}{{x + 1}}\). Chọn D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \(y' = \frac{{1 - \ln x}}{{{x^2}}}\); \(y' = 0 \Leftrightarrow 1 - \ln x = 0 \Leftrightarrow \ln x = 1 \Leftrightarrow x = e \in \left[ {2;3} \right]\).

Ta có \(y\left( 2 \right) = \frac{{\ln 2}}{2};y\left( e \right) = \frac{1}{e};y\left( 3 \right) = \frac{{\ln 3}}{3}\).

Suy ra \(\mathop {\min }\limits_{\left[ {2;3} \right]} y = \frac{{\ln 2}}{2}\). Suy ra \(a = 1;b = 2\). Do đó \(a - 5b = 1 - 5.2 = - 9\).

Trả lời: \( - 9\).

Lời giải

Vì \(A \in Ox \Rightarrow A\left( {a;0;0} \right),B \in Oy \Rightarrow B\left( {0;b;0} \right)\).

Gọi \(G\) là trọng tâm tam giác \(ABC\), \(G \in Oz \Rightarrow G\left( {0;0;c} \right)\).

Do đó \(C\left( { - a; - b;3c} \right)\).

Ta có \(\overrightarrow {AB} = \left( { - a;b;0} \right),\overrightarrow {AC} = \left( { - 2a; - b;3c} \right)\).

Vì \(\Delta ABC\) vuông tại \(A\) nên \(\overrightarrow {AB} .\overrightarrow {AC} = 0\)\( \Leftrightarrow 2{a^2} - {b^2} = 0 \Leftrightarrow {b^2} = 2{a^2}\).

Khi đó \(\frac{{OA}}{{OB}} = \frac{{\sqrt {{a^2}} }}{{\sqrt {{b^2}} }} = \sqrt {\frac{{{a^2}}}{{2{a^2}}}} = \frac{{\sqrt 2 }}{2}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

\(\overrightarrow {AB} \).

\(\overrightarrow {BS} \).

\(\overrightarrow {SA} \).

\(\overrightarrow 0 \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP