Câu hỏi:

19/10/2025 23 Lưu

Trong hệ trục tọa độ \(Oxyz\), tọa độ trung điểm của đoạn \(AB\) với \(A\left( {1;0; - 3} \right)\) và \(B\left( { - 1;2;1} \right)\) là

\(\left( {1; - 1; - 2} \right)\).

\(\left( {2; - 2; - 4} \right)\).

\(\left( {0;2; - 2} \right)\).

\(\left( {0;1; - 1} \right)\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Tọa độ trung điểm \(I\) của đoạn \(AB\) là \(\left( {0;1; - 1} \right)\). Chọn D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) \(\overrightarrow {AA'} + \overrightarrow {AB} + \overrightarrow {AD} = \overrightarrow {AC'} \) (theo quy tắc hình hộp).

b)

index_html_95d2dd321d18a7ac.gif

Gọi \(M\) là trung điểm của \(DC\).

Ta có \(\overrightarrow {AG} = \overrightarrow {AM} + \overrightarrow {MG} = \overrightarrow {AD} + \overrightarrow {DM} + \frac{1}{3}\overrightarrow {MD'} \)\( = \overrightarrow {AD} + \frac{1}{2}\overrightarrow {DC} + \frac{1}{3}\overrightarrow {MD} + \frac{1}{3}\overrightarrow {DD'} \)\( = \overrightarrow {AD} + \frac{1}{2}\overrightarrow {AB} - \frac{1}{3}.\frac{1}{2}\overrightarrow {DC} + \frac{1}{3}\overrightarrow {AA'} \)

\( = \overrightarrow {AD} + \frac{1}{2}\overrightarrow {AB} - \frac{1}{6}\overrightarrow {AB} + \frac{1}{3}\overrightarrow {AA'} \)\( = \overrightarrow {AD} + \frac{1}{3}\overrightarrow {AB} + \frac{1}{3}\overrightarrow {AA'} \).

\(\overrightarrow {DB} = \overrightarrow {DA} + \overrightarrow {DC} \)\( = - \overrightarrow {AD} + \overrightarrow {AB} \).

Khi đó \(\overrightarrow {AG} .\overrightarrow {DB} = \left( {\overrightarrow {AD} + \frac{1}{3}\overrightarrow {AB} + \frac{1}{3}\overrightarrow {AA'} } \right)\left( { - \overrightarrow {AD} + \overrightarrow {AB} } \right)\)

\( = - {\overrightarrow {AD} ^2} - \frac{1}{3}\overrightarrow {AB} .\overrightarrow {AD} - \frac{1}{3}\overrightarrow {AA'} .\overrightarrow {AD} + \overrightarrow {AD} .\overrightarrow {AB} + \frac{1}{3}{\overrightarrow {AB} ^2} + \frac{1}{3}\overrightarrow {AA'} .\overrightarrow {AB} \)

\( = - {\overrightarrow {AD} ^2} + \frac{1}{3}{\overrightarrow {AB} ^2}\) (vì \(\overrightarrow {AB} .\overrightarrow {AD} = \overrightarrow {AA'} .\overrightarrow {AD} = \overrightarrow {AD} .\overrightarrow {AB} = \overrightarrow {AA'} .\overrightarrow {AB} = 0\))

\( = - 9{a^2} + \frac{1}{3}.4{a^2} = - \frac{{23}}{3}{a^2}\).

c) \(\left| {\overrightarrow {AB} + \overrightarrow {AD} + \overrightarrow {CC'} } \right| = \left| {\overrightarrow {AB} + \overrightarrow {AD} + \overrightarrow {AA'} } \right| = \left| {\overrightarrow {AC'} } \right| = \sqrt {4{a^2} + 9{a^2} + 16{a^2}} = a\sqrt {29} \).

d) Có \(AA' \bot AD\) nên \(\overrightarrow {AA'} .\overrightarrow {AD} = 0\).

Đáp án: a) Đúng; b) Đúng; c) Đúng; d) Sai.

Lời giải

Ta có \(y' = \frac{{1 - \ln x}}{{{x^2}}}\); \(y' = 0 \Leftrightarrow 1 - \ln x = 0 \Leftrightarrow \ln x = 1 \Leftrightarrow x = e \in \left[ {2;3} \right]\).

Ta có \(y\left( 2 \right) = \frac{{\ln 2}}{2};y\left( e \right) = \frac{1}{e};y\left( 3 \right) = \frac{{\ln 3}}{3}\).

Suy ra \(\mathop {\min }\limits_{\left[ {2;3} \right]} y = \frac{{\ln 2}}{2}\). Suy ra \(a = 1;b = 2\). Do đó \(a - 5b = 1 - 5.2 = - 9\).

Trả lời: \( - 9\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP