Câu hỏi:

19/10/2025 23 Lưu

Người ta ghi lại tiền lãi (đơn vị: triệu đồng) của một số nhà đầu tư (với số tiền đầu tư như nhau), khi đầu tư vào hai lĩnh vực A, B cho kết quả như sau:

index_html_e4f0c441ed872087.png

Tính tổng độ lệch chuẩn cho các mẫu số liệu về tiền lãi của các nhà đầu tư vào hai lĩnh vực A và B (làm tròn kết quả cuối cùng đến hàng phần mười).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

index_html_bebe65475127407d.png

Xét lĩnh vực A.

\(\overline {{x_A}} = \frac{{2.7,5 + 5.12,5 + 8.17,5 + 6.22,5 + 4.27,5}}{{2 + 5 + 8 + 6 + 4}} = 18\).

\(s_A^2 = \frac{{2.{{\left( {7,5 - 18} \right)}^2} + 5.{{\left( {12,5 - 18} \right)}^2} + 8.{{\left( {17,5 - 18} \right)}^2} + 6.{{\left( {22,5 - 18} \right)}^2} + 4.{{\left( {27,5 - 18} \right)}^2}}}{{2 + 5 + 8 + 6 + 4}} = \frac{{137}}{4}\).

Suy ra \({s_A} = \frac{{\sqrt {137} }}{2}\).

Xét lĩnh vực B

\(\overline {{x_B}} = \frac{{8.7,5 + 4.12,5 + 2.17,5 + 5.22,5 + 6.27,5}}{{8 + 4 + 2 + 5 + 6}} = \frac{{169}}{{10}}\).

\(s_B^2 = \frac{{8.{{\left( {7,5 - 16,9} \right)}^2} + 4.{{\left( {12,5 - 16,9} \right)}^2} + 2.{{\left( {17,5 - 16,9} \right)}^2} + 5.{{\left( {22,5 - 16,9} \right)}^2} + 6.{{\left( {27,5 - 16,9} \right)}^2}}}{{8 + 4 + 2 + 5 + 6}} = \frac{{1616}}{{25}}\).

Suy ra \({s_B} = \frac{{4\sqrt {101} }}{5}\).

Do đó \({s_A} + {s_B} = \frac{{\sqrt {137} }}{2} + \frac{{4\sqrt {101} }}{5} \approx 13,9\).

Trả lời: \(13,9\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) \(\overrightarrow {AA'} + \overrightarrow {AB} + \overrightarrow {AD} = \overrightarrow {AC'} \) (theo quy tắc hình hộp).

b)

index_html_95d2dd321d18a7ac.gif

Gọi \(M\) là trung điểm của \(DC\).

Ta có \(\overrightarrow {AG} = \overrightarrow {AM} + \overrightarrow {MG} = \overrightarrow {AD} + \overrightarrow {DM} + \frac{1}{3}\overrightarrow {MD'} \)\( = \overrightarrow {AD} + \frac{1}{2}\overrightarrow {DC} + \frac{1}{3}\overrightarrow {MD} + \frac{1}{3}\overrightarrow {DD'} \)\( = \overrightarrow {AD} + \frac{1}{2}\overrightarrow {AB} - \frac{1}{3}.\frac{1}{2}\overrightarrow {DC} + \frac{1}{3}\overrightarrow {AA'} \)

\( = \overrightarrow {AD} + \frac{1}{2}\overrightarrow {AB} - \frac{1}{6}\overrightarrow {AB} + \frac{1}{3}\overrightarrow {AA'} \)\( = \overrightarrow {AD} + \frac{1}{3}\overrightarrow {AB} + \frac{1}{3}\overrightarrow {AA'} \).

\(\overrightarrow {DB} = \overrightarrow {DA} + \overrightarrow {DC} \)\( = - \overrightarrow {AD} + \overrightarrow {AB} \).

Khi đó \(\overrightarrow {AG} .\overrightarrow {DB} = \left( {\overrightarrow {AD} + \frac{1}{3}\overrightarrow {AB} + \frac{1}{3}\overrightarrow {AA'} } \right)\left( { - \overrightarrow {AD} + \overrightarrow {AB} } \right)\)

\( = - {\overrightarrow {AD} ^2} - \frac{1}{3}\overrightarrow {AB} .\overrightarrow {AD} - \frac{1}{3}\overrightarrow {AA'} .\overrightarrow {AD} + \overrightarrow {AD} .\overrightarrow {AB} + \frac{1}{3}{\overrightarrow {AB} ^2} + \frac{1}{3}\overrightarrow {AA'} .\overrightarrow {AB} \)

\( = - {\overrightarrow {AD} ^2} + \frac{1}{3}{\overrightarrow {AB} ^2}\) (vì \(\overrightarrow {AB} .\overrightarrow {AD} = \overrightarrow {AA'} .\overrightarrow {AD} = \overrightarrow {AD} .\overrightarrow {AB} = \overrightarrow {AA'} .\overrightarrow {AB} = 0\))

\( = - 9{a^2} + \frac{1}{3}.4{a^2} = - \frac{{23}}{3}{a^2}\).

c) \(\left| {\overrightarrow {AB} + \overrightarrow {AD} + \overrightarrow {CC'} } \right| = \left| {\overrightarrow {AB} + \overrightarrow {AD} + \overrightarrow {AA'} } \right| = \left| {\overrightarrow {AC'} } \right| = \sqrt {4{a^2} + 9{a^2} + 16{a^2}} = a\sqrt {29} \).

d) Có \(AA' \bot AD\) nên \(\overrightarrow {AA'} .\overrightarrow {AD} = 0\).

Đáp án: a) Đúng; b) Đúng; c) Đúng; d) Sai.

Lời giải

Ta có \(y' = \frac{{1 - \ln x}}{{{x^2}}}\); \(y' = 0 \Leftrightarrow 1 - \ln x = 0 \Leftrightarrow \ln x = 1 \Leftrightarrow x = e \in \left[ {2;3} \right]\).

Ta có \(y\left( 2 \right) = \frac{{\ln 2}}{2};y\left( e \right) = \frac{1}{e};y\left( 3 \right) = \frac{{\ln 3}}{3}\).

Suy ra \(\mathop {\min }\limits_{\left[ {2;3} \right]} y = \frac{{\ln 2}}{2}\). Suy ra \(a = 1;b = 2\). Do đó \(a - 5b = 1 - 5.2 = - 9\).

Trả lời: \( - 9\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP