Một hộ làm nghề dệt vải lụa tơ tằm sản xuất mỗi ngày được \(x\) mét vải lụa ( \(1 \le x \le 18\)).Tổng chi phí sản xuất \(x\) mét vải lụa (tính bằng nghìn đồng) cho bởi hàm chi phí \(C\left( x \right) = {x^3} - 3{x^2} - 20x + 500\).
Giả sử hộ làm nghề dệt này bán hết sản phẩm mỗi ngày với giá 220 nghìn đồng/mét. Gọi \(B\left( x \right)\) là số tiền bán được và \(L\left( x \right)\) là lợi nhuận thu được khi bán \(x\) mét vải lụa. Hộ làm nghề dệt này cần sản xuất và bán ra mỗi ngày bao nhiêu mét vải lụa để thu được lợi nhuận tối đa. Hãy tính lợi nhuận tối đa đó.
Quảng cáo
Trả lời:

Số tiền bán hết \(x\) mét vải lụa là \(B\left( x \right) = 220x\) nghìn đồng.
Lợi nhuận thu được khi bán \(x\) mét vải lụa là
\(L\left( x \right) = B\left( x \right) - C\left( x \right) = 220x - \left( {{x^3} - 3{x^2} - 20x + 500} \right)\)\( = - {x^3} + 3{x^2} + 240x - 500\).
Có \(L'\left( x \right) = - 3{x^2} + 6x + 240 = 0\)\( \Leftrightarrow x = 10\) (vì \(1 \le x \le 18\)).
Ta có \(L\left( 1 \right) = - {1^3} + {3.1^2} + 240.1 - 500 = - 258\); \(L\left( {10} \right) = - {10^3} + {3.10^2} + 240.10 - 500 = 1200\);
\(L\left( {18} \right) = - {18^3} + {3.18^2} + 240.18 - 500 = - 1040\).
Vậy mỗi ngày hộ làm nghề dệt này cần sản xuất và bán ra 10 mét vải thì thu được lợi nhuận tối đa là 1200 nghìn đồng
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có \(y' = \frac{{1 - \ln x}}{{{x^2}}}\); \(y' = 0 \Leftrightarrow 1 - \ln x = 0 \Leftrightarrow \ln x = 1 \Leftrightarrow x = e \in \left[ {2;3} \right]\).
Ta có \(y\left( 2 \right) = \frac{{\ln 2}}{2};y\left( e \right) = \frac{1}{e};y\left( 3 \right) = \frac{{\ln 3}}{3}\).
Suy ra \(\mathop {\min }\limits_{\left[ {2;3} \right]} y = \frac{{\ln 2}}{2}\). Suy ra \(a = 1;b = 2\). Do đó \(a - 5b = 1 - 5.2 = - 9\).
Trả lời: \( - 9\).
Lời giải
Vì \(A \in Ox \Rightarrow A\left( {a;0;0} \right),B \in Oy \Rightarrow B\left( {0;b;0} \right)\).
Gọi \(G\) là trọng tâm tam giác \(ABC\), \(G \in Oz \Rightarrow G\left( {0;0;c} \right)\).
Do đó \(C\left( { - a; - b;3c} \right)\).
Ta có \(\overrightarrow {AB} = \left( { - a;b;0} \right),\overrightarrow {AC} = \left( { - 2a; - b;3c} \right)\).
Vì \(\Delta ABC\) vuông tại \(A\) nên \(\overrightarrow {AB} .\overrightarrow {AC} = 0\)\( \Leftrightarrow 2{a^2} - {b^2} = 0 \Leftrightarrow {b^2} = 2{a^2}\).
Khi đó \(\frac{{OA}}{{OB}} = \frac{{\sqrt {{a^2}} }}{{\sqrt {{b^2}} }} = \sqrt {\frac{{{a^2}}}{{2{a^2}}}} = \frac{{\sqrt 2 }}{2}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
\(\overrightarrow {AB} \).
\(\overrightarrow {BS} \).
\(\overrightarrow {SA} \).
\(\overrightarrow 0 \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.