Câu hỏi:

19/10/2025 87 Lưu

Một cây cầu có dạng cung \[OA\] là một phần của đồ thị hàm số \[y = 4,8\sin \frac{x}{5}\] và được mô tả trong hệ trục tọa độ với đơn vị trục là mét như hình bên.

Một cây cầu có dạng cung \[OA\] là một phần của đ (ảnh 1)

Giả sử chiều rộng của con sông là đoạn thẳng \[OA\]. Tính chiều rộng của con sông đó. (Làm tròn kết quả đến hàng phần mười).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: 15,7

Giải phương trình \[y = 0\], ta có:

\[4,8\sin \frac{x}{5} = 0\]\[ \Leftrightarrow \sin \frac{x}{5} = 0\]\[ \Leftrightarrow \frac{x}{5} = k\pi \Leftrightarrow x = k5\pi {\rm{ }}\left( {k \in \mathbb{Z}} \right).\]

Do đó đồ thị cắt trục \[Ox\] tại các điểm có hoành độ \[0;{\rm{ }}5\pi ;{\rm{ }}10\pi ,...\]

Vì thế ta có tọa độ điểm \[A\left( {5\pi ;0} \right)\] nên chiều rộng của con sông là \[OA = 5\pi \approx 15,7{\rm{ }}\left( m \right).\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Cho hình chóp \[S.ABCD\] có đáy là hình bình hành. \[M\]là trung điểm của \[SC\]. Gọi \[I\] là giao điểm của đường thẳng \[AM\] với mặt phẳng \[\left( {SBD} \right)\]. Tính tỉ số \[\frac{{IA}}{{IM}}\].

Lời giải

Hướng dẫn giải

Đáp án đúng là: 2

Gọi \[O\] là tâm hình bình hành \[ABCD.\]

Ta có: \[I = AM \cap \left( {SBD} \right) = AM \cap SO.\]

Xét tam giác \[SAC\], có \[AM\] và \[SO\] là hai đường trung tuyến của tam giác.

Mà \[AM \cap SO = I\] nên \[I\] là trọng tâm của tam giác \[SAC\].

Do đó, \[\frac{{IA}}{{IM}} = 2.\]

Cho hình chóp \[S.ABCD\] có đáy là hình bình hành. \[M\]là trung điểm của \[SC\]. Gọi \[I\] là giao điểm của đường thẳng \[AM\] với mặt phẳng \[\left( {SBD} \right)\]. Tính tỉ số \[\frac{{IA}}{{IM}}\]. (ảnh 1)

Lời giải

Hướng dẫn giải

a) Đ

b) S

c) Đ

d) Đ

 

Ta có: \[\left\{ \begin{array}{l}{u_1} + {u_7} = 26\\u_2^2 + u_6^2 = 466\end{array} \right.\]

      \[ \Leftrightarrow \left\{ \begin{array}{l}{u_1} + {u_1} + 6d = 26\\{\left( {{u_1} + d} \right)^2} + {\left( {{u_1} + 5d} \right)^2} = 466\end{array} \right.\]

      \[ \Leftrightarrow \left\{ \begin{array}{l}2{u_1} + 6d = 26\\2u_1^2 + 12{u_1}d + 26{d^2} = 466\end{array} \right.\]

      \[ \Leftrightarrow \left\{ \begin{array}{l}{u_1} = 13 - 3d\\u_1^2 + 6{u_1}d + 13{d^2} = 233\end{array} \right.\]

Thay \[{u_1} = 13 - 3d\] vào phương trình \[u_1^2 + 6{u_1}d + 13{d^2} = 233\], ta được:

\[{\left( {13 - 3d} \right)^2} + 6\left( {13 - 3d} \right)d + 13{d^2} = 233\]

\[ \Leftrightarrow 169 - 78d + 9{d^2} + 78d - 18{d^2} + 13{d^2} - 233 = 0\]

\[ \Leftrightarrow 4{d^2} - 64 = 0\]\[ \Leftrightarrow {d^2} = 16\]

Do \[d < 0\] nên \[d = - 4\].

Suy ra \[{u_1} = 13 - 3 \cdot \left( { - 4} \right) = 13 + 12 = 25\].

Vậy cấp số cộng \[\left( {{u_n}} \right)\] có số hạng \[{u_1} = 25\] và công sai \[d = - 4\].

Ta có: \[{u_{10}} = {u_1} + 9d = 25 + 9.\left( { - 4} \right) = - 11.\]

           \[{u_{2024}} = {u_1} + 2023d = 25 + 2023.\left( { - 4} \right) = - 8067.\]

Câu 6

A. \[y = \sin x.\]      

B. \[y = \cos x.\]              
C. \[y = \tan x.\]                          
D. \[y = \cot x.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \[ - 300^\circ .\] 

B. \[510^\circ .\]             
C. \[60^\circ .\]                             
D. \[ - 420^\circ .\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP