Trong các hình sau

Hình nào có thể là hình biểu diễn một tứ diện?
Trong các hình sau

Hình nào có thể là hình biểu diễn một tứ diện?
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: D
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
|
a) Đ |
b) S |
c) Đ |
d) Đ |
![Cho hình chóp \[S.ABCD\] có đáy \[ABCD\] là hình c (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/10/31-1760833938.png)
a) Ta có: \[\left\{ \begin{array}{l}S \in \left( {SAB} \right) \cap \left( {SCD} \right)\\AB\parallel CD\end{array} \right.\].
Suy ra giao tuyến của hai mặt phẳng \[\left( {SAB} \right)\] và \[\left( {SCD} \right)\] là đường thẳng qua \[S\] và song song với \[AB\].
b) Gọi \(O\) là giao điểm của hai đường chéo \(AC\) và \(BD\).
Ta có \[\left\{ \begin{array}{l}O \in \left( {SAC} \right) \cap \left( {SBD} \right)\\S \in \left( {SAC} \right) \cap \left( {SBD} \right)\end{array} \right. \Rightarrow SO = \left( {SAC} \right) \cap \left( {SBD} \right)\].
Suy ra giao tuyến của hai mặt phẳng \[\left( {SAC} \right)\] và \[\left( {SBD} \right)\] là đường thẳng \[SO.\]
c) Ta có: \[\left\{ \begin{array}{l}G \in \left( {SAB} \right) \cap \left( {JIG} \right)\\AB\parallel JI\end{array} \right.\]
Suy ra giao tuyến của hai mặt phẳng \[\left( {SAB} \right)\] và \[\left( {IGJ} \right)\] là đường thẳng qua \[G\] và song song với \[AB\].
Lại có \(AB||CD\) nên giao tuyến của hai mặt phẳng \[\left( {SAB} \right)\] và \[\left( {IGJ} \right)\] là đường thẳng qua \[G\] và song song với \[CD\].
d) Theo đề, ta có: \[NA = \frac{1}{3}SA \Rightarrow SN = \frac{2}{3}SA \Rightarrow \frac{{SN}}{{SA}} = \frac{2}{3}.\]
Lại có: \[SM = \frac{2}{3}SD \Leftrightarrow \frac{{SM}}{{SD}} = \frac{2}{3}\] nên \[\frac{{SN}}{{SA}} = \frac{{SM}}{{SD}} = \frac{2}{3}\]. Suy ra \[MN\parallel AD\].
Ta có: \[\left\{ \begin{array}{l}G \in \left( {GBC} \right) \cap \left( {GMN} \right)\\MN\parallel AD\\BC\parallel AD\end{array} \right.\]
Suy ra giao tuyến của hai mặt phẳng \[\left( {GMN} \right)\] và \[\left( {GBC} \right)\] là đường thẳng qua \[G\] và song song với \[AD.\]
Lời giải
Hướng dẫn giải
|
a) Đ |
b) S |
c) S |
d) S |
Ta thấy, số tiền lương năm sau hơn năm trước \[20\] triệu đồng nên \[\left( {{u_n}} \right)\] là cấp số cộng có \[{u_1} = 100\] và công sai \[d = 20\].
Do đó, \[{u_n} = {u_1} + \left( {n - 1} \right)d = 100 + \left( {n - 1} \right).20 = 20n + 80\].
Số tiền lương sinh viên nhận được ở năm thứ hai là \[{u_2} = 100 + \left( {2 - 1} \right).20 = 120\] (triệu đồng).
Số tiền lương sinh viên nhận được ở năm thứ 10 là \[{u_{10}} = 100 + \left( {10 - 1} \right).20 = 280\] (triệu đồng).
Số tiền bạn sinh viên tiết kiệm được sau \[n\] năm là
\[S = \frac{n}{2}\left[ {2{u_1} + \left( {n - 1} \right)d} \right] - 70n\]
\[ = \frac{n}{2}\left[ {2.100 + \left( {n - 1} \right).20} \right] - 70n\]
\[ = 10{n^2} + 20n\] (triệu đồng).
Ta có: \[S \ge 2000 \Leftrightarrow 10{n^2} + 20n \ge 2000\]
\[ \Leftrightarrow 10{n^2} + 20n - 2000 \ge 0 \Leftrightarrow \left[ \begin{array}{l}n \ge 13,1{\rm{ }}\left( {TM} \right)\\n \le - 15,1{\rm{ }}\left( L \right)\end{array} \right.\].
Do đó, sau ít nhất 14 năm thì sinh viên có thể mua được chung cư 2 tỉ đồng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
