Câu hỏi:

20/10/2025 91 Lưu

Giả sử một vật dao động điều hòa xung quanh vị trí cân bằng theo phương trình \[x = 2\cos \left( {5t - \frac{\pi }{6}} \right)\]. Ở đây, thời gian \[t\] tính bằng giây và quãng đường \[x\] tính bằng centimét, vật đi qua vị trí cân bằng bao nhiêu lần trong 3 giây đầu?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: 5

Vị trí cân bằng của vật dao động điều hòa là vị trí vật đứng yên khi đó \[x = 0\] ta có:

\[2\cos \left( {5t - \frac{\pi }{6}} \right) = 0\] \[ \Leftrightarrow \cos \left( {5t - \frac{\pi }{6}} \right) = 0\] \[ \Rightarrow 5t - \frac{\pi }{6} = \frac{\pi }{2} + k\pi \] \[ \Leftrightarrow t = \frac{{2\pi }}{{15}} + \frac{{k\pi }}{5},k \in \mathbb{Z}\].

Trong khoảng thời gian 3 giây đầu tiên, tức là \[0 \le t \le 3\],

hay \[0 \le \frac{{2\pi }}{{15}} + k\frac{\pi }{5} \le 3\]\[ \Leftrightarrow - \frac{2}{3} \le k \le \frac{{45 - 2\pi }}{{3\pi }}\].

Vì \[k \in \mathbb{Z}\] nên \[k \in \left\{ {0;1;2;3;4} \right\}\].

Vậy trong khoảng thời gian 3 giây đầu tiên, vật qua vị trí cân bằng 5 lần.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

a) Đ

b) S

c) Đ

d) Đ

 Cho hình chóp \[S.ABCD\] có đáy \[ABCD\] là hình c (ảnh 1)

a) Ta có: \[\left\{ \begin{array}{l}S \in \left( {SAB} \right) \cap \left( {SCD} \right)\\AB\parallel CD\end{array} \right.\].

Suy ra giao tuyến của hai mặt phẳng \[\left( {SAB} \right)\] và \[\left( {SCD} \right)\] là đường thẳng qua \[S\] và song song với \[AB\].

b) Gọi \(O\) là giao điểm của hai đường chéo \(AC\) và \(BD\).

Ta có \[\left\{ \begin{array}{l}O \in \left( {SAC} \right) \cap \left( {SBD} \right)\\S \in \left( {SAC} \right) \cap \left( {SBD} \right)\end{array} \right. \Rightarrow SO = \left( {SAC} \right) \cap \left( {SBD} \right)\].

Suy ra giao tuyến của hai mặt phẳng \[\left( {SAC} \right)\] và \[\left( {SBD} \right)\] là đường thẳng \[SO.\]

c) Ta có: \[\left\{ \begin{array}{l}G \in \left( {SAB} \right) \cap \left( {JIG} \right)\\AB\parallel JI\end{array} \right.\]

Suy ra giao tuyến của hai mặt phẳng \[\left( {SAB} \right)\] và \[\left( {IGJ} \right)\] là đường thẳng qua \[G\] và song song với \[AB\].

Lại có \(AB||CD\) nên giao tuyến của hai mặt phẳng \[\left( {SAB} \right)\] và \[\left( {IGJ} \right)\] là đường thẳng qua \[G\] và song song với \[CD\].

d) Theo đề, ta có: \[NA = \frac{1}{3}SA \Rightarrow SN = \frac{2}{3}SA \Rightarrow \frac{{SN}}{{SA}} = \frac{2}{3}.\]

Lại có: \[SM = \frac{2}{3}SD \Leftrightarrow \frac{{SM}}{{SD}} = \frac{2}{3}\] nên \[\frac{{SN}}{{SA}} = \frac{{SM}}{{SD}} = \frac{2}{3}\]. Suy ra \[MN\parallel AD\].

Ta có: \[\left\{ \begin{array}{l}G \in \left( {GBC} \right) \cap \left( {GMN} \right)\\MN\parallel AD\\BC\parallel AD\end{array} \right.\]

Suy ra giao tuyến của hai mặt phẳng \[\left( {GMN} \right)\] và \[\left( {GBC} \right)\] là đường thẳng qua \[G\] và song song với \[AD.\]

Lời giải

Hướng dẫn giải

Đáp án đúng là: 7

Ta có: \[\sin 2x + 2 = m\] \[ \Leftrightarrow \sin 2x = m - 2\]

Điều kiện để phương trình có nghiệm là \[ - 1 \le m - 2 \le 1\] \[ \Leftrightarrow 1 \le m \le 3\] hay \[m \in \left[ {1;3} \right]\].

Suy ra \[a = 1;b = 3\].

Vậy \[T = a + 2b = 1 + 2.3 = 7\].

Câu 3

A. Dãy số tăng.                                                
B. Dãy số giảm.
C. Dãy số không tăng, không giảm.                
D. Dãy số vừa tăng vừa giảm.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[M = \cos x.\]    
B. \[M = \cos 3x.\]          
C. \[M = \sin x.\]                                 
D. \[M = \sin 3x.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP