Câu hỏi:

20/10/2025 36 Lưu

PHẦN III. Câu trắc nghiệm trả lời ngắn. Thí sinh trả lời câu 1 đến câu 6.

Giả sử một vật dao động điều hòa xung quanh vị trí cân bằng theo phương trình \(x = 2\cos \left( {5t - \frac{\pi }{6}} \right)\). Ở đây, thời gian \(t\) tính bằng giây và quãng đường \(x\) tính bằng centimét. Hãy cho biết trong khoảng thời gian từ 0 đến 6 giây, vật đi qua vị trí cân bằng bao nhiêu lần?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Trả lời: 9

Vị trí cân bằng của vật dạo động điều hòa là vị trí vật đứng yên, khi đó \(x = 0\), ta có

\(2\cos \left( {5t - \frac{\pi }{6}} \right) = 0\)\( \Leftrightarrow \cos \left( {5t - \frac{\pi }{6}} \right) = 0\)\[ \Leftrightarrow 5t - \frac{\pi }{6} = \frac{\pi }{2} + k\pi ,k \in \mathbb{Z}\]\[ \Leftrightarrow t = \frac{{2\pi }}{{15}} + k\frac{\pi }{5},k \in \mathbb{Z}\].

Trong khoảng thời gian từ 0 đến 6 giây, tức là \(0 \le t \le 6\) hay

\[0 \le \frac{{2\pi }}{{15}} + k\frac{\pi }{5} \le 6\]\[ \Leftrightarrow - \frac{2}{3} \le k \le \frac{{90 - 2\pi }}{{3\pi }}\].

\(k \in \mathbb{Z}\) nên \(k \in \left\{ {0;1;2;3;4;5;6;7;8} \right\}\).

Vậy trong khoảng thời gian từ 0 đến 6 giây, vật đi qua vị trí cần bằng 9 lần.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \({u_4} = \frac{1}{4}\).                      
B. \({u_5} = \frac{1}{{16}}\).          
C. \({u_5} = \frac{1}{{32}}\).         
D. \({u_3} = \frac{1}{8}\).

Lời giải

Đáp án đúng là: A

\({u_4} = \frac{4}{{{2^4}}} = \frac{1}{4}\).

Lời giải

a) Đ, b) Đ, c) Đ, d) S

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là h (ảnh 1)

a) Vì \(\left. \begin{array}{l}O \in \left( {OMN} \right)\\O = AC \cap BD\end{array} \right\} \Rightarrow \left\{ \begin{array}{l}O \in \left( {OMN} \right)\\O \in \left( {ABCD} \right)\end{array} \right. \Rightarrow O \in \left( {OMN} \right) \cap \left( {ABCD} \right)\).

b) Vì \(M,N\) lần lượt là trung điểm của \(SA\)\(SD\) nên \(MN//AD\).

\(ABCD\) là hình bình hành nên \(AD//BC\).

Vậy \(\left\{ \begin{array}{l}MN//AD\\AD//BC\end{array} \right. \Rightarrow MN//BC\).

c) Vì \(M,O\) lần lượt là trung điểm của \(SA\)\(AC\) nên \(MO//SC\).

Vậy \(\left\{ \begin{array}{l}OM//SC\\SC \subset \left( {SBC} \right)\end{array} \right. \Rightarrow OM//\left( {SBC} \right)\).

d) Vì \(\left\{ \begin{array}{l}MN//BC\\BC \subset \left( {SBC} \right)\end{array} \right. \Rightarrow MN//\left( {SBC} \right)\).

Vậy \(\left\{ \begin{array}{l}MN//\left( {SBC} \right)\\OM//\left( {SBC} \right)\\MN \cap OM = M\\MN,OM \subset \left( {OMN} \right)\end{array} \right. \Rightarrow \left( {OMN} \right)//\left( {SBC} \right)\).

Do đó hai mặt phẳng \(\left( {OMN} \right)\)\(\left( {SBC} \right)\) không có đường thẳng giao tuyến.

Câu 5

A. \(5\).                        

B. \(23\).                  
C. \(12\).                           
D. \(17\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP