Người ta trồng cây theo các hàng ngang với quy luật: ở hàng thứ nhất có 1 cây, ở hàng thứ hai có 2 cây, ở hàng thứ ba có 3 cây, …, ở hàng thứ \(n\) có \(n\) cây. Biết rằng người ta trồng hết \(4950\) cây. Hỏi số hàng cây được trồng theo cách trên là bao nhiêu?
Người ta trồng cây theo các hàng ngang với quy luật: ở hàng thứ nhất có 1 cây, ở hàng thứ hai có 2 cây, ở hàng thứ ba có 3 cây, …, ở hàng thứ \(n\) có \(n\) cây. Biết rằng người ta trồng hết \(4950\) cây. Hỏi số hàng cây được trồng theo cách trên là bao nhiêu?
Quảng cáo
Trả lời:
Trả lời: 99
Giả sử người ta đã trồng được \(n\) hàng.
Số cây ở mỗi hàng lập thành một cấp số cộng với \({u_1} = 1,d = 1\).
Tổng số cây ở \(n\) hàng cây là \({S_n} = \frac{{n\left( {n + 1} \right)}}{2} = 4950\)\( \Leftrightarrow {n^2} + n - 9900 = 0\)\( \Leftrightarrow n = 99\).
Vậy có 99 hàng cây được trồng theo cách trên.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Trả lời: 6

Gọi \(M\) là trung điểm của \(BC\), \(F\) là giao điểm của \(AM\) và \(CD\) trong mặt phẳng \(\left( {ABCD} \right)\).
Theo định lí Talet, ta có \(\frac{{MA}}{{MF}} = \frac{{MB}}{{MC}} = 1 \Rightarrow MA = MF \Rightarrow M\) là trung điểm của \(AF\).
Suy ra \(\frac{{AG}}{{AF}} = \frac{{AG}}{{2AM}} = \frac{1}{3}\).
Ta có \(\left\{ \begin{array}{l}GE \subset \left( {SAF} \right)\\GE//\left( {SCD} \right)\\\left( {SAF} \right) \cap \left( {SCD} \right) = SF\end{array} \right.\)\( \Rightarrow GE//SF \Rightarrow \frac{{AE}}{{AS}} = \frac{{AG}}{{AF}} = \frac{1}{3} \Rightarrow AE = \frac{1}{3}AS\).
Suy ra \(SE = \frac{2}{3}SA \Rightarrow \frac{m}{n} = \frac{2}{3} \Rightarrow m.n = 6\).
Lời giải
Trả lời: 1

Ta có \(\left\{ \begin{array}{l}N \in \left( {MNI} \right) \cap \left( {ABC} \right)\\IM//BC\end{array} \right. \Rightarrow \left( {MNI} \right) \cap \left( {ABC} \right) = d\).
Với \(d\) là đường thẳng đi qua \(N\) và song song với \(BC\).
Gọi \(F = AB \cap d\).
Xét tứ giác \(MIFN\) có \(\left\{ \begin{array}{l}MI//NF\\MI = NF\end{array} \right. \Rightarrow MIFN\) là hình bình hành.
Mà \(G\) là trung điểm của \(NI\) nên \(M,G,F\) thẳng hàng.
Vậy \(MG \cap \left( {ABD} \right) = F \in AB\) và \(F\) là trung điểm của \(AB\) nên \(\frac{{FA}}{{FB}} = 1\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
