CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Độ sâu của mực nước trong kênh bằng 12 mét khi \(2\cos \left( {\frac{{\pi t}}{{12}} + \frac{\pi }{6}} \right) + 10 = 12\)\( \Leftrightarrow \cos \left( {\frac{{\pi t}}{{12}} + \frac{\pi }{6}} \right) = 1\)

\( \Leftrightarrow \frac{{\pi t}}{{12}} + \frac{\pi }{6} = k2\pi \)\( \Leftrightarrow t = - 2 + 24k\).

\(0 \le t \le 24\) nên \(0 \le - 2 + 24k \le 24\)\( \Leftrightarrow \frac{1}{{12}} \le k \le \frac{{13}}{{12}}\)\(k \in \mathbb{Z}\) \( \Rightarrow k = 1\).

Do đó \(t = 22\).

Vậy vào lúc 22 giờ thì độ sau của mực nước trong kênh bằng 12 mét.

Lời giải

Cho hình chóp tứ giác \(S.ABCD\)có đáy \(ABC (ảnh 1)

Trong mặt phẳng \(\left( {ABCD} \right)\)\(I = MN \cap AB\).

Trong mặt phẳng \(\left( {SAB} \right)\)\(Q = IP \cap SB\)\(IP \subset \left( {MNP} \right)\). Do đó \(Q = SB \cap \left( {MNP} \right)\).

\(IB//CN\) nên \(\frac{{IB}}{{CN}} = \frac{{MB}}{{MC}} = 1\) \( \Rightarrow \frac{{IB}}{{IA}} = \frac{1}{3}\).

Áp dụng định lí Menelaus cho \(\Delta SAB\)\(\frac{{SP}}{{PA}}.\frac{{AI}}{{IB}}.\frac{{BQ}}{{QS}} = 1\)\( \Leftrightarrow 1.3.\frac{{BQ}}{{QS}} = 1\)\( \Rightarrow \frac{{BQ}}{{QS}} = \frac{1}{3}\).

Câu 4

A. \(15\).                      
B. \(17\).                      
C. \(4\).                                                                     
D. \(13\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP