Câu hỏi:

20/10/2025 9 Lưu

Cho mẫu số liệu về thời gian (phút) đi từ nhà đến trường của một số học sinh lớp 11 như sau:Cho mẫu số liệu về thời gian (phút) đi từ nhà đến trường của một số học sinh lớp 11 như sau: Tìm tứ phân vị Q1 của mẫu số liệu trên (làm tròn đến 1 chữ số thập phân). (ảnh 1)

Tìm tứ phân vị \({Q_1}\) của mẫu số liệu trên (làm tròn đến 1 chữ số thập phân).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Cỡ mẫu \(n = 7 + 12 + 5 + 7 + 3 + 5 + 1 = 40\).

Gọi \({x_1};{x_2};...;{x_{40}}\) là thời gian đi từ nhà đến trường của 40 học sinh lớp 11 được xếp theo thứ tự không giảm.

Ta có \({Q_1} = \frac{{{x_{10}} + {x_{11}}}}{2}\) mà \({x_{10}};{x_{11}} \in \left[ {20;25} \right)\) nên nhóm này chứa tứ phân vị thứ nhất.

Ta có \({Q_1} = 20 + \frac{{\frac{{40}}{4} - 7}}{{12}}.5 \approx 21,3\).

Trả lời: 21,3.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Độ sâu của mực nước trong kênh bằng 12 mét khi \(2\cos \left( {\frac{{\pi t}}{{12}} + \frac{\pi }{6}} \right) + 10 = 12\)\( \Leftrightarrow \cos \left( {\frac{{\pi t}}{{12}} + \frac{\pi }{6}} \right) = 1\)

\( \Leftrightarrow \frac{{\pi t}}{{12}} + \frac{\pi }{6} = k2\pi \)\( \Leftrightarrow t = - 2 + 24k\).

\(0 \le t \le 24\) nên \(0 \le - 2 + 24k \le 24\)\( \Leftrightarrow \frac{1}{{12}} \le k \le \frac{{13}}{{12}}\)\(k \in \mathbb{Z}\) \( \Rightarrow k = 1\).

Do đó \(t = 22\).

Vậy vào lúc 22 giờ thì độ sau của mực nước trong kênh bằng 12 mét.

Lời giải

Cho hình chóp \(S.ABCD\) có đáy là hình bình hành tâm \(O\). Gọi \(M,N\) lần lượt là trung điểm của \(SA,AD\). Khi đó  a) \(M \in \left( {SAD} \right)\). (ảnh 1)

a) Có \(M \in SA \subset \left( {SAD} \right) \Rightarrow M \in \left( {SAD} \right)\).

b) Xét \(\Delta ABD\), có \(O\) là trung điểm của \(BD\), \(N\) là trung điểm của \(AD\) nên \(ON\) là đường trung bình của \(\Delta ABD\).

Suy ra \(ON//AB\).

c) Tương tự \(OM//SC\). Mà \(OM \subset \left( {SAC} \right)\) nên OM không song song (SAC).

d) Có \(OM//SC\) mà \(SC \subset \left( {SCD} \right) \Rightarrow OM//\left( {SCD} \right)\)(1).

Có \(ON//AB\) mà \(AB//CD\) nên \(ON//CD\) mà \(CD \subset \left( {SCD} \right)\). Suy ra \(ON//\left( {SCD} \right)\) (2).

Từ (1) và (2), suy ra \(\left( {OMN} \right)//\left( {SCD} \right)\).

Đáp án: a) Đúng;   b) Đúng;   c) Sai;   d) Đúng.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP