Cho góc \(\alpha \left( {0^\circ < \alpha < 180^\circ } \right)\) thỏa mãn \(\cot \alpha = - \frac{1}{2}\). Giá trị \(\cos \alpha \) bằng
Quảng cáo
Trả lời:
Ta có \({\sin ^2}\alpha = \frac{1}{{1 + {{\cot }^2}\alpha }} = \frac{1}{{1 + \frac{1}{4}}} = \frac{4}{5}\).
Mà \(0^\circ < \alpha < 180^\circ \) nên \(\sin \alpha = \frac{2}{{\sqrt 5 }}\). Lại có \(\cot \alpha = - \frac{1}{2}\) \( \Rightarrow \cos \alpha = \cot \alpha .\sin \alpha = - \frac{1}{2}.\frac{2}{{\sqrt 5 }} = - \frac{1}{{\sqrt 5 }}\). Chọn A.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải

Do M là trung điểm của BC nên ta có \(\overrightarrow {GB} + \overrightarrow {GC} = 2\overrightarrow {GM} \). Chọn A.
Câu 2
Lời giải
Điều kiện: \(x - 1 > 0 \Leftrightarrow x > 1\).
Vậy tập xác định của hàm số là \(D = \left( {1; + \infty } \right)\). Chọn C.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. \(2x - y \le 3\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Cho hình chữ nhật \(ABCD\) tâm O có \(AB = 4;BC = 3\).
a) \(\overrightarrow {AB} \) và \(\overrightarrow {CD} \) cùng hướng.
b) \(\left| {\overrightarrow {AB} + \overrightarrow {BC} } \right| = 7\).
c) \(\overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} + \overrightarrow {MD} = 4\overrightarrow {MO} \), với M là điểm bất kì.
d) \(\overrightarrow {AB} .\overrightarrow {AC} = 16\).
Cho hình chữ nhật \(ABCD\) tâm O có \(AB = 4;BC = 3\).
a) \(\overrightarrow {AB} \) và \(\overrightarrow {CD} \) cùng hướng.
b) \(\left| {\overrightarrow {AB} + \overrightarrow {BC} } \right| = 7\).
c) \(\overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} + \overrightarrow {MD} = 4\overrightarrow {MO} \), với M là điểm bất kì.
d) \(\overrightarrow {AB} .\overrightarrow {AC} = 16\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

