Câu hỏi:

21/10/2025 40 Lưu

Cho α và β là hai góc bù nhau. Trong các khẳng định sau, khẳng định nào sai?    

A. \(\cot \alpha = \cot \beta \).                      
B. \(\cos \alpha = - \cos \beta \). 
C. \(\sin \alpha = \sin \beta \).    
D. \(\tan \alpha = - \tan \beta \).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

α và β là hai góc bù nhau thì \(\cot \alpha = - \cot \beta \). Chọn A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Từ vị trí A người ta quan sát một cây cao (hình vẽ). Biết AH = 4 m, HB = 20 m, \(\widehat {BAC} = 45^\circ \). Tính chiều cao của cây?   (ảnh 2)

Trong tam giác AHB, ta có \(\tan \widehat {ABH} = \frac{{AH}}{{BH}} = \frac{4}{{20}} = \frac{1}{5} \Rightarrow \widehat {ABH} \approx 11,3^\circ \).

Suy ra \(\widehat {ABC} = 90^\circ - 11,3^\circ = 78,7^\circ \), \(\widehat {ACB} = 180^\circ - \left( {\widehat {BAC} + \widehat {ABC}} \right) = 56,3^\circ \).

Suy ra \(AB = \sqrt {A{H^2} + H{B^2}}  = 4\sqrt {26} \).

Áp dụng định lí sin trong tam giác ABC, ta có: \(\frac{{AB}}{{\sin C}} = \frac{{CB}}{{\sin A}} \Rightarrow CB = \frac{{AB.\sin A}}{{\sin C}} \approx 17,3\).

Vậy cây cao khoảng 17,3 m.

Lời giải

Một chất điểm A chịu tác dụng của ba lực \(\overrightarrow {{F_1 (ảnh 2)

Đặt \(\overrightarrow {{F_1}} = \overrightarrow {AB} ,\overrightarrow {{F_2}} = \overrightarrow {AD} ,\overrightarrow {{F_3}} = \overrightarrow {AE} \).

Vẽ hình chữ nhật ABCD.

Vì vật ở trạng thái cân bằng nên \(\overrightarrow {{F_1}} + \overrightarrow {{F_2}} + \overrightarrow {{F_3}} = \overrightarrow 0 \) \( \Leftrightarrow \overrightarrow {AB} + \overrightarrow {AD} + \overrightarrow {AE} = \overrightarrow 0 \)\( \Leftrightarrow \overrightarrow {AC} = - \overrightarrow {AE} \).

Ta có \(AB = 12,\widehat {CAD} = 180^\circ - 120^\circ = 60^\circ \Rightarrow \widehat {BAC} = 30^\circ \).

Tam giác ABC vuông tại B nên \(BC = AB\tan 30^\circ = 12.\frac{{\sqrt 3 }}{3} = 4\sqrt 3 = AD\).

Độ lớn lực \(\overrightarrow {{F_2}} \) bằng \(4\sqrt 3 \) N.

Ta có \(AC = \sqrt {A{B^2} + B{C^2}} = \sqrt {{{12}^2} + {{\left( {4\sqrt 3 } \right)}^2}} = 8\sqrt 3 \).

Do vậy \(\left| {\overrightarrow {{F_3}} } \right| = \left| {\overrightarrow {AE} } \right| = AC = 8\sqrt 3 \).

Câu 6

A. \(\overrightarrow {BC} = 3\overrightarrow {AB} \). 

B. \(\overrightarrow {AB} = - 3\overrightarrow {CA} \). 
C. \(\overrightarrow {BC} = - 2\overrightarrow {BA} \).    
D. \(\overrightarrow {AC} = - 4\overrightarrow {AB} \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(D = \mathbb{R}\backslash \left\{ { - 3} \right\}\).                         
B. \(D = \mathbb{R}\backslash \left\{ 3 \right\}\).            
C. \(D = \mathbb{R}\backslash \left\{ 0 \right\}\).                                                
D. \(D = \mathbb{R}\backslash \left\{ 2 \right\}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP