Cho hàm số bậc hai \(f\left( x \right) = a{x^2} + bx + c\left( {a \ne 0} \right)\) có đồ thị như hình vẽ.

Tính giá trị của biểu thức \(a + 2b + c\).
Cho hàm số bậc hai \(f\left( x \right) = a{x^2} + bx + c\left( {a \ne 0} \right)\) có đồ thị như hình vẽ.

Tính giá trị của biểu thức \(a + 2b + c\).
Quảng cáo
Trả lời:
Dựa vào đồ thị hàm số ta có đồ thị hàm số đi qua điểm \(\left( {0;3} \right) \Rightarrow c = 3\).
Tọa độ đỉnh của Parabol là \(\left( {2; - 1} \right)\). Suy ra \( - \frac{b}{{2a}} = 2 \Leftrightarrow 4a + b = 0\) (1).
Lại có \(y\left( 2 \right) = - 1\) \( \Leftrightarrow 4a + 2b + 3 = - 1 \Leftrightarrow 4a + 2b = - 4\)(2).
Từ (1) và (2) suy ra \(a = 1;b = - 4\).
Do đó \(a + 2b + c = 1 + 2.\left( { - 4} \right) + 3 = - 4\).
Trả lời: −4.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi \(x,y\left( {x \ge 0;y \ge 0} \right)\) lần lượt là số ha trồng rau và hoa.
Diện tích đất trồng canh tác không vượt quá 8 ha nên ta có \(x + y \le 8\).
Số ngày công sử dụng không vượt quá 180 ngày nên \(20x + 30y \le 180\).
Theo đề ta có hệ bất phương trình \(\left\{ \begin{array}{l}x \ge 0\\y \ge 0\\x + y \le 8\\20x + 30y \le 180\end{array} \right.\).
Ta cần tìm \(x,y\) sao cho \(F = 3x + 4y\) lớn nhất.
Miền nghiệm của hệ bất phương trình trên là miền trong của tứ giác OABC kể cả 4 cạnh của tứ giác (phần tô màu) với \(O\left( {0;0} \right),A\left( {8;0} \right),B\left( {6;2} \right),C\left( {0;6} \right)\).

Với \(O\left( {0;0} \right)\) thì F = 0.
Với \(A\left( {8;0} \right)\) thì \(F = 24\).
Với \(B\left( {6;2} \right)\) thì \(F = 26\).
Với \(C\left( {0;6} \right)\) thì \(F = 24\).
Vậy lợi nhuận cao nhất mà gia đình anh Hùng thu được từ trồng rau và hoa là 26 triệu đồng.
Trả lời: 26.
Lời giải
Đổi \(4{\rm{km/h = }}\frac{{200}}{3}\)m/phút; \({\rm{19km/h = }}\frac{{950}}{3}\)m/phút.
Có \(\widehat C = 180^\circ - \left( {\widehat A + \widehat B} \right) = 180^\circ - \left( {7^\circ + 5^\circ } \right) = 168^\circ \).
Áp dụng định lí sin ta có: \(\frac{{AB}}{{\sin C}} = \frac{{AC}}{{\sin B}} = \frac{{BC}}{{\sin A}}\).
Suy ra \(AC = \frac{{AB.\sin B}}{{\sin C}} = \frac{{850.\sin 5^\circ }}{{\sin 168^\circ }}\); \(BC = \frac{{AB.\sin A}}{{\sin C}} = \frac{{850.\sin 7^\circ }}{{\sin 168^\circ }}\).
Thời gian đi từ nhà đến trường là \(\frac{{AC}}{{\frac{{200}}{3}}} + \frac{{BC}}{{\frac{{950}}{3}}} = \frac{{3.850.\sin 5^\circ }}{{200.\sin 168^\circ }} + \frac{{3.850.\sin 7^\circ }}{{950.\sin 168^\circ }} \approx 7\) phút.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

