Cho biểu thức \(M = \sqrt {x - 1} + \frac{1}{{x - 3}} + \sqrt[3]{{x - 2}}\).
a) Điều kiện xác định của \(\sqrt[3]{{x - 2}}\) là \(x \ge 2.\)
b) Điều kiện của \(x\) để biểu thức \(M\) có nghĩa là \(x \ge 2.\)
c) Khi \(x = 1\) thì giá trị của biểu thức \(M\) là \[\frac{{ - 3}}{2}.\]
d) Khi \(\sqrt[3]{{x - 2}} = 0\) thì giá trị của biểu thức \(M\) là \(0\).
Cho biểu thức \(M = \sqrt {x - 1} + \frac{1}{{x - 3}} + \sqrt[3]{{x - 2}}\).
a) Điều kiện xác định của \(\sqrt[3]{{x - 2}}\) là \(x \ge 2.\)
b) Điều kiện của \(x\) để biểu thức \(M\) có nghĩa là \(x \ge 2.\)
c) Khi \(x = 1\) thì giá trị của biểu thức \(M\) là \[\frac{{ - 3}}{2}.\]
d) Khi \(\sqrt[3]{{x - 2}} = 0\) thì giá trị của biểu thức \(M\) là \(0\).
Quảng cáo
Trả lời:

a) Sai. Điều kiện xác định của \(\sqrt[3]{{x - 2}}\) là \(x \in \mathbb{R}.\)
b) Sai. Để biểu thức \(M\) có nghĩa khi \(x - 1 \ge 0\) và \(x - 3 \ne 0\) hay \(x \ge 1\) và \(x \ne 3\).
c) Đúng. Với \(x = 1\) (TMĐK), thay \(x = 1\) vào biểu thức \(M\), ta được:
\[M = \sqrt {1 - 1} + \frac{1}{{1 - 3}} + \sqrt[3]{{1 - 2}} = 0 + \frac{{ - 1}}{2} - 1 = \frac{{ - 3}}{2}.\].
d) Đúng. Khi \(\sqrt[3]{{x - 2}} = 0\) hay \(x = 2\) (TMĐK), thay \(x = 2\) vào biểu thức \(M\), ta được:
\(M = \sqrt {2 - 1} + \frac{1}{{2 - 3}} + 0 = 1 + \frac{1}{{ - 1}} = 0.\)
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có \(h = 200\;\,{\rm{km}} = 200\,\,000{\rm{\;m}} = 0,2 \cdot {10^6}\;{\rm{\;m}}\).
Tốc độ của vệ tinh: \[v = 6,378 \cdot {10^6} \cdot \sqrt {\frac{{9,81}}{{6,378 \cdot {{10}^6} + 0,2 \cdot {{10}^6}}}} \]
\[ = 6,378 \cdot {10^6} \cdot \sqrt {\frac{{9,81}}{{6,578 \cdot {{10}^6}}}} \]
\[ = {6,378.10^3} \cdot \sqrt {\frac{{9,81}}{{6,578}}} \approx 7790\,\,({\rm{m}}\,{\rm{/}}\,{\rm{s}})\]
Vậy ở độ cao so với mặt đất \[200{\rm{ km}}\] thì tốc độ của vệ tinh khoảng \[7790\,\,{\rm{m}}\,{\rm{/}}\,{\rm{s}}.\]
Lời giải
a) Sai. Điều kiện của phương trình là \(x + 2 \ge 0\) nên \(x \ge - 2.\)
b) Đúng. Bình phương hai vế ta được: \(2{x^2} + x - 6 = {x^2} + 4x + 4\)
\(2{x^2} - {x^2} + x - 4x - 6 - 4 = 0\)
\({x^2} - 3x - 10 = 0.\)
c) Đúng. Ta có \({x^2} - 3x - 10 = 0\)
\({x^2} - 5x + 2x - 10 = 0\)
\(x\left( {x - 5} \right) + 2\left( {x - 5} \right) = 0\)
\(\left( {x - 5} \right)\left( {x + 2} \right) = 0\)
\(x - 5 = 0\) hoặc \(x + 2 = 0\)
\(x = 5\) (TMĐK) hoặc \(x = - 2\) (TMĐK)
Vậy phương trình có hai nghiệm \(x = 5\,;\,\,x = - 2.\)
d) Sai. Tổng bình phương của hai nghiệm là \({5^2} + {\left( { - 2} \right)^2} = 25 + 4 = 29.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \(M > N\).
B. \(M < N\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.