Câu hỏi:

22/10/2025 117 Lưu

Phần 2. (2,0 điểm) Câu trắc nghiệm đúng sai

Trong câu 13, 14, hãy chọn đúng hoặc sai cho mỗi ý a), b), c), d).

Một chiếc xe khách đi từ Thành phố Hồ Chí Minh đến Cần Thơ, quãng đường dài \(170\) km. Sau khi xe khách xuất phát 1 giờ 40 phút, một xe tải bắt đầu đi từ Cần Thơ về Thành phố Hồ Chí Minh và gặp xe khách sau đó 40 phút. Biết rằng mỗi giờ xe khách đi nhanh hơn xe tải là \(15\) km. Gọi \(x\) là vận tốc của xe tải, \(y\) là vận tốc của xe khách (\(y > x > 0\), km/h).

    a) \(y - x = 15.\)

    b) Phương trình biểu diễn quãng đường Thành phố Hồ Chí Minh – Cần Thơ là \(\frac{7}{3}x + \frac{2}{3}y = 170.\)

    c) Hệ phương trình biểu diễn bài toán là \(\left\{ \begin{array}{l}y - x = 15\\\frac{7}{3}x + \frac{2}{3}y = 170\end{array} \right.\).

    d) Vận tốc của xe tải là \(60\)km/h, vận tốc của xe khách là 45 km/h.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: a) Đúng.  b) Sai.          c) Sai.              d) Sai.

Gọi \(x\) là vận tốc của xe tải, \(y\) là vận tốc của xe khách (\(y > x > 0\), km/h).

• Theo đề, mỗi giờ xe khách đi nhanh hơn xe tải là \(15\) km nên \(y - x = 15.\)

Do đó, ý a) là đúng.

Thời gian xe khách đã đi là: 1 giờ 40 phút + 40 phút = 2 giờ 20 phút = \(\frac{7}{3}\) giờ.

Khi hai xe gặp nhau, xe khách đi được quãng đường là: \(\frac{7}{3}y\) (km) và xe tải đi được quãng đường là \(\frac{2}{3}x\) (km).

Theo bài, quãng đường Thành phố Hồ Chí Minh – Cần Thơ dài 170 km nên ta có phương trình: \(\frac{2}{3}x + \frac{7}{3}y = 170\).

Do đó, ý b) là sai.

• Từ đó, ta có hệ phương trình biểu diễn bài toán là: \(\left\{ \begin{array}{l}y - x = 15\\\frac{2}{3}x + \frac{7}{3}y = 170\end{array} \right.\).

Do đó, ý c) là sai.

• Thế \(y = 15 + x\), thế vào phương trình \(\frac{2}{3}x + \frac{7}{3}y = 170\), ta được:

\(\frac{2}{3}x + \frac{7}{3}\left( {15 + x} \right) = 170\)

\(\frac{2}{3}x + 35 + \frac{7}{3}x = 170\)

\(3x = 135\)

\(x = 45\) (thỏa mãn).

Thay \(x = 45\) vào phương trình (1), ta được: \(y = 15 + 45 = 60\) (thỏa mãn).

Vậy vận tốc của xe tải là \(45\)km/h, vận tốc của xe khách là \(60\) km/h.

Vậy ý d) là sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Coi các sân đó là hình vuông \[ABCD\], phần lát gạch đỏ trang trí là hình vuông \[MNPQ\].

Ta chứng minh được \[\Delta AMQ = \Delta BNM = \Delta CPN = \Delta DQP\] (c.c.c)

Diện tích hình vuông \[MNPQ\] có diện tích nhỏ nhất khi tổng diện tích bốn tam giác vuông ở bốn góc hình vuông \[ABCD\] là lớn nhất.

Gọi \[S = {S_{\Delta AMQ}} + {S_{\Delta BNM}} + {S_{\Delta CPN}} + {S_{\Delta DQP}} = 4{S_{\Delta AMQ}} = 4 \cdot \frac{1}{2}AM \cdot AQ = 2 \cdot AM \cdot AQ\]

\[AM + AQ = AM + MB = 16\,\,\left( {\rm{m}} \right)\].

Lại có \[{\left( {AM - MB} \right)^2} \ge 0\]

Suy ra \[A{M^2} + M{B^2} \ge 2MA \cdot MB\]

Do đó, \[A{M^2} + 2MA \cdot MB + M{B^2} \ge 4MA \cdot MB\]

             \[{\left( {MA + MB} \right)^2} \ge 4MA \cdot MB\]

Suy ra \[2MA \cdot MB \le \frac{{{{\left( {MA + MB} \right)}^2}}}{2} = \frac{{{{16}^2}}}{2} = 128\] hay \[S \le 128\].

Dấu “=” xảy ra khi \[MA = MB = \frac{{AB}}{2} = 8{\rm{ }}\left( {\rm{m}} \right)\].

Khi đó, \[M,\,N,\,P,\,Q\] lần lượt là trung điểm của các cạnh \[AB,\,BC,\,CD,\,DA.\]

Vậy khi \[M,\,N,\,P,\,Q\] lần lượt là trung điểm của các cạnh \[AB,\,BC,\,CD,\,DA\] thì diện tích hình vuông \[MNPQ\] nhỏ nhất.

Lời giải

Hướng dẫn giải

a) Chứng minh rằng \[OD \bo (ảnh 1)

a) Xét \[\Delta OBC\] cân tại \[O\] (do \[OC = OB = R\]) nên đường trung tuyến \[OK\] cũng là đường cao của \[\Delta OBC.\] Suy ra \[OK \bot BC\] hay \[OD \bot BC\].

Xét nửa đường tròn \(\left( O \right)\) đường kính \(AB,\)\[\widehat {ACB}\] là góc nội tiếp chắn nửa đường tròn nên \[\widehat {ACB} = 90^\circ .\]

Vậy \[\Delta ABC\] vuông tại \[C\].

b) Xét \[\Delta OBC\] cân tại \[O\] (do \[OC = OB = R\]) nên đường trung tuyến \[OK\] cũng là đường phân giác của \[\Delta OBC.\] Do đó \(\widehat {BOD} = \widehat {COD}.\)

Xét \[\Delta CDO\]\[\Delta BDO\] có:

\[OD\] là cạnh chung; \(\widehat {BOD} = \widehat {COD}\); \[OB = OC\]

Do đó \[\Delta CDO = \Delta BDO\] (c.g.c).

Suy ra \[\widehat {DCO} = \widehat {DBO} = 90^\circ \] (hai góc tương ứng).

Như vậy, \[OC \bot DC\] tại \[C\] thuộc \(\left( O \right)\) hay \[DC\] là tiếp tuyến của đường tròn \[\left( O \right)\].

c) Gọi \[F\] là giao điểm của \[BC,\,\,AE.\]

Ta có: \[IC \bot AB\]\[AF \bot AB\], suy ra \[IC\,{\rm{//}}\,AF\] hay \[IC\,{\rm{//}}\,EF\].

Xét \[\Delta BEF\], có: \[\frac{{IC}}{{EF}} = \frac{{IB}}{{EB}}\] (Hệ quả định lí Thalès) (1)

Xét \[\Delta BAE\], có: \[\frac{{IH}}{{AE}} = \frac{{IB}}{{EB}}\] (Hệ quả định lí Thalès) (2)

Từ (1) và (2) suy ra \[\frac{{IC}}{{EF}} = \frac{{IH}}{{EA}}\], mà \[IC = IH\] (do \(I\) là trung điểm của \(CH)\) nên \[EF = EA\] hay \[E\] là trung điểm của \[AF.\]

Ta có \[\widehat {FCA} = 90^\circ \] (cùng bù với \[\widehat {ACB} = 90^\circ \]) nên \[\Delta FCA\] vuông tại \[C\].

 

Xét \(\Delta ACF\) vuông tại \(C,\)\(CE\) là đường trung tuyến ứng với cạnh huyền \(AF\) nên \[CE = EA = EF = \frac{1}{2}AF.\]

Xét \[\Delta CEO\]\[\Delta AEO\], có:

\[CE = AE\], \[OC = OA\]\[OE\] là cạnh chung

Do đó \[\Delta CEO = \Delta AEO\] (c.c.c)

Suy ra \[\widehat {ECO} = \widehat {EAO} = 90^\circ \] (hai góc tương ứng).

Ta có: \[\widehat {ECO} + \widehat {OCD} = 90^\circ + 90^\circ = 180^\circ \] hay \[\widehat {ECD} = 180^\circ \].

Vậy ba điểm \[E,C,D\] thẳng hàng.

a) Chứng minh rằng \[OD \bo (ảnh 2)

 

Câu 5

A. \({x^2} + 3y = 4.\)                              
B. \(x - 3{y^2} = 5.\)                                
C. \(x + \frac{1}{y} = 2.\)                       
D. \(2x - y = 3.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP