Một người có tầm mắt cao \[1,65{\rm{ m}}\] đứng trên tầng thượng của tòa Lotte Center thì nhìn thấy một chiếc xe thu gom phế thải đang dừng ở \[B\] với góc nghiêng \[80^\circ \] (như hình vẽ). Biết xe đó cách tòa nhà \(48{\rm{ m}}\). Lúc này, một người ở độ cao \[200{\rm{ m}}\] của tòa nhà cũng nhìn thấy xe thu gom phế thải khác đang dừng ở \[E\] với góc nghiêng \(65^\circ \). (Tất cả các kết quả làm tròn đến hàng phần trăm)
a) \(AC = AB.\cot \widehat {CBA}\).
b) Tòa nhà có độ cao lớn hơn \(272{\rm{ m}}{\rm{.}}\)
c) Khoảng cách từ xe thu gom phế thải ở \(E\) đến chân tòa nhà khoảng \(93,26{\rm{ m}}{\rm{.}}\)
d) Hai xe thu gom phế thải cách nhau một khoảng lớn hơn \(45{\rm{ m}}{\rm{.}}\)

a) \(AC = AB.\cot \widehat {CBA}\).
b) Tòa nhà có độ cao lớn hơn \(272{\rm{ m}}{\rm{.}}\)
c) Khoảng cách từ xe thu gom phế thải ở \(E\) đến chân tòa nhà khoảng \(93,26{\rm{ m}}{\rm{.}}\)
d) Hai xe thu gom phế thải cách nhau một khoảng lớn hơn \(45{\rm{ m}}{\rm{.}}\)
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: a) Sai. b) Sai. c) Đúng. d) Đúng.
• Từ hình vẽ, ta xét tam giác vuông \(ABC\), có:
\(AC = AB.\tan \widehat {CBA} = 48.\tan 80^\circ \approx 272,22{\rm{ }}\left( {\rm{m}} \right){\rm{.}}\)
Do đó, ý a) là sai.
• Do người đó có tầm mắt \[1,65{\rm{ m}}\] nên chiều cao của tòa nhà là:
\[272,22 - 1,65 = 270,57{\rm{ }}\left( {\rm{m}} \right)\].
Vậy tòa nhà cao \[270,57{\rm{ m}}\].
Do đó, ý b) là sai.
• Khoảng cách từ xe thu gom phế thải ở \[E\] đến chân tòa nhà là độ dài đoạn \[EA\].
Xét tam giác vuông \[EAD\], ta có:
\[EA = \frac{{AD}}{{\tan \widehat {DEA}}} = \frac{{200}}{{\tan 65^\circ }} \approx 93,26{\rm{ }}\left( {\rm{m}} \right){\rm{.}}\]
Do đó, ý c) là đúng.
• Khoảng cách của hai xe thu gom phế thải là \[93,26 - 48 = 45,26{\rm{ }}\left( {\rm{m}} \right){\rm{.}}\]
Vậy hai xe thu gom phế thải cách nhau \[45,26{\rm{ m}}\].
Vậy ý d) là đúng.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Coi các sân đó là hình vuông \[ABCD\], phần lát gạch đỏ trang trí là hình vuông \[MNPQ\].
Ta chứng minh được \[\Delta AMQ = \Delta BNM = \Delta CPN = \Delta DQP\] (c.c.c)
Diện tích hình vuông \[MNPQ\] có diện tích nhỏ nhất khi tổng diện tích bốn tam giác vuông ở bốn góc hình vuông \[ABCD\] là lớn nhất.
Gọi \[S = {S_{AMQ}} + {S_{BNM}} + {S_{CPN}} + {S_{DQP}} = 4{S_{AMQ}} = 4 \cdot \frac{1}{2}AM \cdot AQ = 2 \cdot AM \cdot AQ\]
Mà \[AM + AQ = AM + MB = 16\,\,\left( {\rm{m}} \right)\].
Lại có \[{\left( {AM - MB} \right)^2} \ge 0\]
Suy ra \[A{M^2} + M{B^2} \ge 2MA \cdot MB\]
Do đó, \[A{M^2} + 2MA \cdot MB + M{B^2} \ge 4MA \cdot MB\]
\[{\left( {MA + MB} \right)^2} \ge 4MA \cdot MB\]
Suy ra \[2MA \cdot MB \le \frac{{{{\left( {MA + MB} \right)}^2}}}{2} = \frac{{{{16}^2}}}{2} = 128\] hay \[S \le 128\].
Dấu “=” xảy ra khi \[MA = MB = \frac{{AB}}{2} = 8{\rm{ }}\left( {\rm{m}} \right)\].
Khi đó, \[M,\,N,\,P,\,Q\] lần lượt là trung điểm của các cạnh \[AB,\,BC,\,CD,\,DA.\]
Vậy khi \[M,\,N,\,P,\,Q\] lần lượt là trung điểm của các cạnh \[AB,\,BC,\,CD,\,DA\] thì diện tích hình vuông \[MNPQ\] nhỏ nhất.
Lời giải
Hướng dẫn giải
a) Với \(a \ge 0,{\rm{ }}a \ne 16\), ta có:
\(C = \frac{a}{{a - 16}} - \frac{2}{{\sqrt a - 4}} - \frac{2}{{\sqrt a + 4}}\)
\[ = \frac{a}{{\left( {\sqrt a - 4} \right)\left( {\sqrt a + 4} \right)}} - \frac{{2\left( {\sqrt a + 4} \right)}}{{\left( {\sqrt a - 4} \right)\left( {\sqrt a + 4} \right)}} - \frac{{2\left( {\sqrt a - 4} \right)}}{{\left( {\sqrt a + 4} \right)\left( {\sqrt a - 4} \right)}}\]
\[ = \frac{{a - 2\sqrt a - 8 - 2\sqrt a + 8}}{{\left( {\sqrt a - 4} \right)\left( {\sqrt a + 4} \right)}}\]
\[ = \frac{{a - 4\sqrt a }}{{\left( {\sqrt a - 4} \right)\left( {\sqrt a + 4} \right)}}\]
\[ = \frac{{\sqrt a \left( {\sqrt a - 4} \right)}}{{\left( {\sqrt a - 4} \right)\left( {\sqrt a + 4} \right)}}\]
\[ = \frac{{\sqrt a }}{{\sqrt a + 4}}.\]
Vậy với \(a \ge 0,{\rm{ }}a \ne 16\) có \[C = \frac{{\sqrt a }}{{\sqrt a + 4}}.\]
b) Ta có: \(a = 9 - 4\sqrt 5 = 5 - 2 \cdot 2 \cdot \sqrt 5 + 4 = {\left( {\sqrt 5 - 2} \right)^2}\).
Thay vào \[C,\] ta được:
\[C = \frac{{\sqrt a }}{{\sqrt a + 4}} = \frac{{\sqrt {{{\left( {\sqrt 5 - 2} \right)}^2}} }}{{\sqrt {{{\left( {\sqrt 5 - 2} \right)}^2}} + 4}} = \frac{{\sqrt 5 - 2}}{{\sqrt 5 + 2}} = \frac{{{{\left( {\sqrt 5 - 2} \right)}^2}}}{{\left( {\sqrt 5 + 2} \right)\left( {\sqrt 5 - 2} \right)}} = \frac{{9 - 4\sqrt 5 }}{{5 - 4}} = 9 - 4\sqrt 5 \].
Vậy giá trị của \(C = 9 - 4\sqrt 5 \) tại \(a = 9 - 4\sqrt 5 .\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
