Câu hỏi:

22/10/2025 194 Lưu

Phần 3. (2,0 điểm) Câu hỏi trắc nghiệm trả lời ngắn

Trong các câu từ 15 đến 18, hãy viết câu trả lời/ đáp án vào bài làm mà không cần trình bày lời giải chi tiết.

Có bao nhiêu giá trị của \(x\) thỏa mãn phương trình \(\frac{{1 - 3x}}{{1 + 3x}} - \frac{{1 + 3x}}{{1 - 3x}} = \frac{4}{{1 - 9{x^2}}}\)?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án: 0

Điều kiện xác định \(x \ne \frac{1}{3},\,\,x \ne  - \frac{1}{3}.\)

Ta có: \(\frac{{1 - 3x}}{{1 + 3x}} - \frac{{1 + 3x}}{{1 - 3x}} = \frac{4}{{1 - 9{x^2}}}\)

\(\frac{{{{\left( {1 - 3x} \right)}^2}}}{{\left( {1 + 3x} \right)\left( {1 - 3x} \right)}} - \frac{{{{\left( {1 + 3x} \right)}^2}}}{{\left( {1 + 3x} \right)\left( {1 - 3x} \right)}} = \frac{4}{{\left( {1 + 3x} \right)\left( {1 - 3x} \right)}}\)

\(\frac{{{{\left( {1 - 3x} \right)}^2} - {{\left( {1 + 3x} \right)}^2}}}{{\left( {1 + 3x} \right)\left( {1 - 3x} \right)}} = \frac{4}{{\left( {1 + 3x} \right)\left( {1 - 3x} \right)}}\)

\({\left( {1 - 3x} \right)^2} - {\left( {1 + 3x} \right)^2} = 4\)

\(\left( {1 - 3x - 1 - 3x} \right)\left( {1 - 3x + 1 + 3x} \right) = 4\)

\( - 6x \cdot 2 = 4\)

\( - 12x = 4\)

      \(x =  - \frac{1}{3}\) (loại).

Vậy phương trình vô nghiệm.

Do đó, không có giá trị nào của \(x\) thỏa mãn yêu cầu bài toán.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho đường tròn \(\left( O \right)\) và một điểm \(A\) nằm ngoài đường tròn. Các tiếp tuy (ảnh 1)

a) Ta có: \(AB,AC\) là hai tiếp tuyến của đường tròn \(\left( O \right)\), suy ra \(OA\) là đường phân giác của \(\widehat {BOC}\) (tính chất) nên \(\widehat {AOC} = \frac{1}{2}\widehat {BOC}.\)

Xét đường tròn \(\left( O \right)\), ta có: \(\widehat {CDB} = \frac{1}{2}\widehat {BOC}\) (góc nội tiếp và góc ở tâm cùng chắn cung \(BC\))

Do đó, \(\widehat {AOC} = \widehat {CDB}\).

Xét \(\Delta CMD\)\(\Delta ACO\) có:

\(\widehat {CMD} = \widehat {ACO} = 90^\circ \)\(\widehat {CDM} = \widehat {AOC}\) (do \(\widehat {AOC} = \widehat {CDB}\))

Do đó (g.g).

b) Xét đường tròn \(\left( O \right)\), ta có: \(\widehat {EBF} = 90^\circ \) (góc nội tiếp chắn nửa đường tròn).

Ta có \(\widehat {ABO} = \widehat {EBF} = 90^\circ \) nên \(\widehat {ABE} + \widehat {EBO} = \widehat {EBO} + \widehat {OBF}\)

Suy ra \(\widehat {ABE} = \widehat {OBF}\).

Lại có: \(\widehat {OBF} = \widehat {OFB}\) (vì \(\Delta BOF\) cân tại \(O\) do \(OB = OF)\) suy ra \(\widehat {ABE} = \widehat {OFB}\) (1)

\(\widehat {ECB} = \widehat {OFB}\) (hai góc nội tiếp cùng chắn cung \(EC\) của đường tròn tâm \(O\)) (2)

Từ (1) và (2) suy ra \(\widehat {ECB} = \widehat {ABE}\). (3)

Mặt khác, \(AB = AC\) (tính chất hai tiếp tuyến cắt nhau) và \(OB = OC = R\)

Suy ra \(OA\) là đường trung trực của \(BC\)\(E \in OA\), suy ra \(EB = EC\).

Do đó \(\Delta EBC\) cân tại \(E\) nên \(\widehat {ECB} = \widehat {EBC}\). (4)

Từ (3) và (4) suy ra \(\widehat {EBC} = \widehat {ABE}\) nên \(BE\) là tia phân giác của góc \(B\) trong tam giác \(ABH\).

Vậy \[BE\] là phân giác của \(\widehat {ABC}.\)

c) Theo câu a, (g.g), suy ra \(\widehat {OAC} = \widehat {DCM} = 30^\circ \).

Suy ra \(\widehat {AOC} = 90^\circ - \widehat {OAC} = 90^\circ - 30^\circ = 60^\circ \).

Do đó, \(\widehat {BOC} = 2\widehat {AOC} = 120^\circ \) hay

Xét \(\Delta AHC\) vuông tại \(H\), có: \(\cos \widehat {HAC} = \frac{{AH}}{{AC}}\)

Suy ra \(AC = \frac{{AH}}{{\cos \widehat {HAC}}} = \frac{4}{{\cos 30^\circ }} = \frac{{8\sqrt 3 }}{3}{\rm{ }}\left( {{\rm{cm}}} \right).\)

Xét \(\Delta AOC\) vuông tại \(C\), có: \(OC = AC.\tan \widehat {OAC} = \frac{{8\sqrt 3 }}{3}.\tan 30^\circ = \frac{8}{3}{\rm{ }}\left( {{\rm{cm}}} \right).\)

Diện tích hình quạt giới hạn bởi các bán kính \[OB,OC\] và cung nhỏ \(BC\) là:

\[S = \frac{{\pi .{{\left( {\frac{8}{3}} \right)}^2} \cdot 120}}{{360}} = \frac{{64\pi }}{{27}}{\rm{ }}\left( {{\rm{c}}{{\rm{m}}^{\rm{2}}}} \right)\].

Lời giải

Hướng dẫn giải

Đáp án đúng là: a) Đúng.                  b) Đúng.      c) Đúng.        d) Sai.

• Gọi giá niêm yết của quyển sách bồi dưỡng Toán và quyển sách bồi dưỡng Ngữ Văn lần lượt là \(x,{\rm{ }}y\) (đồng). Điều kiện xác định \(x > 0,{\rm{ }}y > 0.\)

Do đó, ý a) là đúng.

• Vì một quyển sách bồi dưỡng Toán và một quyển sách bồi dưỡng Ngữ Văn với tổng số tiền theo giá niêm yết là \(270{\rm{ }}000\) đồng nên ta có phương trình \(x + y = 270{\rm{ }}000\). Do đó, ý b) là đúng.

• Vì An mua vào lúc cửa hàng có chương trình giảm giá nên khi thanh toán quyển sách Toán được giảm giá \(10\% \); quyển sách Ngữ Văn được giảm giá \(20\% \) nên chỉ cần phải trả \(228{\rm{ }}000\) đồng.

Do đó, ta có \(\left( {100\% - 10\% } \right)x + \left( {100\% - 20\% } \right)y = 228{\rm{ }}000\) hay \(0,9x + 0,8y = 228{\rm{ }}000\).

Từ đây, ta có hệ phương trình \(\left\{ \begin{array}{l}x + y = 270{\rm{ }}000\\0,9x + 0,8y = 228{\rm{ }}000\end{array} \right.\).

Do đó, ý c) là đúng.

• Từ phương trình \(x + y = 270{\rm{ }}000\) suy ra \(y = 270{\rm{ }}000 - x\).

Thay \(y = 270{\rm{ }}000 - x\) vào \(0,9x + 0,8y = 228{\rm{ }}000\) ta được

\(0,9x + 0,8\left( {270{\rm{ }}000 - x} \right) = 228{\rm{ }}000\)

\(0,9x + 0,8 \cdot 270{\rm{ }}000 - 0,8x = 228{\rm{ }}000\)

\(0,1x = 228{\rm{ }}000 - 0,8 \cdot 270{\rm{ }}000\)

\(0,1x = 12{\rm{ }}000\)

\(x = 120{\rm{ }}000\)

Thay \(x = 120{\rm{ }}000\) suy ra \(y = 270{\rm{ }}000 - 120{\rm{ }}000 = 150{\rm{ }}000\) (đồng).

Vậy giá niêm yết của quyển sách bồi dưỡng Toán là \(120{\rm{ }}000\) đồng và quyển sách bồi dưỡng Ngữ Văn là \(150{\rm{ }}000\) đồng.

Vậy ý d) là sai.

Câu 4

A. \(OO' > 10{\rm{ cm}}{\rm{.}}\)          
B. \(OO' = 10{\rm{ cm}}{\rm{.}}\)          
C. \(OO' < 10{\rm{ cm}}{\rm{.}}\)          
D. \(2{\rm{ cm}} < OO' < 10{\rm{ cm}}{\rm{.}}\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP