Câu hỏi:

22/10/2025 18 Lưu

Phần 3. (2,0 điểm) Câu hỏi trắc nghiệm trả lời ngắn

Trong các câu từ 15 đến 18, hãy viết câu trả lời/ đáp án vào bài làm mà không cần trình bày lời giải chi tiết.

Có bao nhiêu giá trị của \(x\) thỏa mãn phương trình \(\frac{{1 - 3x}}{{1 + 3x}} - \frac{{1 + 3x}}{{1 - 3x}} = \frac{4}{{1 - 9{x^2}}}\)?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án: 0

Điều kiện xác định \(x \ne \frac{1}{3},\,\,x \ne  - \frac{1}{3}.\)

Ta có: \(\frac{{1 - 3x}}{{1 + 3x}} - \frac{{1 + 3x}}{{1 - 3x}} = \frac{4}{{1 - 9{x^2}}}\)

\(\frac{{{{\left( {1 - 3x} \right)}^2}}}{{\left( {1 + 3x} \right)\left( {1 - 3x} \right)}} - \frac{{{{\left( {1 + 3x} \right)}^2}}}{{\left( {1 + 3x} \right)\left( {1 - 3x} \right)}} = \frac{4}{{\left( {1 + 3x} \right)\left( {1 - 3x} \right)}}\)

\(\frac{{{{\left( {1 - 3x} \right)}^2} - {{\left( {1 + 3x} \right)}^2}}}{{\left( {1 + 3x} \right)\left( {1 - 3x} \right)}} = \frac{4}{{\left( {1 + 3x} \right)\left( {1 - 3x} \right)}}\)

\({\left( {1 - 3x} \right)^2} - {\left( {1 + 3x} \right)^2} = 4\)

\(\left( {1 - 3x - 1 - 3x} \right)\left( {1 - 3x + 1 + 3x} \right) = 4\)

\( - 6x \cdot 2 = 4\)

\( - 12x = 4\)

      \(x =  - \frac{1}{3}\) (loại).

Vậy phương trình vô nghiệm.

Do đó, không có giá trị nào của \(x\) thỏa mãn yêu cầu bài toán.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án đúng là: a) Đúng. b) Đúng.      c) Sai.          d) Đúng.

• Theo đề bài, phần ngọn bị gãy \(AB\) và phần gốc \(AC\) có tỉ lệ \(3:2\) hay \(\frac{{AB}}{{AC}} = \frac{3}{2}\), suy ra \(\frac{{AC}}{{AB}} = \frac{2}{3}\).

Xét tam giác \(ABC\) vuông tại \(C\), ta có: \(\sin \widehat {ABC} = \frac{{AC}}{{AB}} = \frac{2}{3}\). Do đó, ý a) là đúng.

• Vì \(\sin \widehat {ABC} = \frac{{AC}}{{AB}} = \frac{2}{3}\) nên \(\alpha = \widehat {ABC} \approx 41^\circ 49'.\) Do đó, ý b) là đúng.

• Xét tam giác \(ABC\) vuông tại \(C\), ta có: \(AC = BC \cdot \tan \widehat {ABC} \approx 5 \cdot \tan 41^\circ 49' \approx 4,47{\rm{\;(m)}}{\rm{.}}\)

\(\frac{{AB}}{{AC}} = \frac{3}{2}\), suy ra \(AB = \frac{3}{2}AC \approx \frac{3}{2} \cdot 4,47 = 6,705{\rm{ (m)}}{\rm{.}}\)

Độ dài phần ngọn bị gãy là độ dài đoạn thẳng \(AB\). Do đó, ý c) là sai.

• Độ dài cây ban đầu là tổng của phần ngọn bị gãy \(AB\) và phần gốc \(AC\).

Vậy chiều cao ban đầu của cây khoảng: \[4,47 + 6,705 = 11,175 \approx 11,18{\rm{\;(m)}}{\rm{.}}\]Do đó, ý d) là đúng.

Lời giải

Gọi độ dài của đoạn \[AE = x{\rm{ }}\left( {0 < x < 4} \right)\] (m), suy ra độ dài đoạn \[EB = 4 - x{\rm{ }}\left( {\rm{m}} \right).\]

Theo đề, các phần đất hình tam giác bằng nhau, nên ta có:

\[AE = BH = GC = DF = x{\rm{ }}\left( {\rm{m}} \right)\] và \[BE = CH = GD = AF = 4 - x{\rm{ }}\left( {\rm{m}} \right)\].

Áp dụng định lí Pythagore vào tam giác \[AEF\] vuông tại \(A\), có:

\[A{E^2} + A{F^2} = E{F^2}\]

\[{x^2} + {\left( {4 - x} \right)^2} = E{F^2}\]

\[2{x^2} - 8x + 16 = E{F^2}\]

Suy ra \[EF = \sqrt {2{x^2} - 8x + 16}  = \sqrt {2\left( {{x^2} - 4x + 4} \right) + 8}  = \sqrt {2{{\left( {x - 2} \right)}^2} + 8} {\rm{ }}\left( {\rm{m}} \right).\]

Do các phần hình tam giác bằng nhau nên \[FG = GH = HE = EF = \sqrt {2{{\left( {x - 2} \right)}^2} + 8} {\rm{ }}\left( {\rm{m}} \right)\].

Suy ra, chu vi \[EFGH\] là: \[EF + FG + GH + HE = 4EF = 4\sqrt {2{{\left( {x - 2} \right)}^2} + 8} {\rm{ }}\left( {\rm{m}} \right)\].

Để chu vi của tứ giác \[EFGH\] nhỏ nhất thì \[4\sqrt {2{{\left( {x - 2} \right)}^2} + 8} \] nhỏ nhất.

Với mọi \[0 < x < 4,\] ta có:

\[2{\left( {x - 2} \right)^2} \ge 0\]

\[2{\left( {x - 2} \right)^2} + 8 \ge 8\]

\[\sqrt {2{{\left( {x - 2} \right)}^2} + 8}  \ge \sqrt 8 \]

\[4\sqrt {2{{\left( {x - 2} \right)}^2} + 8}  \ge 4\sqrt 8 \]

\[4\sqrt {2{{\left( {x - 2} \right)}^2} + 8}  \ge 8\sqrt 2 \].

Do đó, chu vi của tứ giác \[EFGH\] nhỏ nhất bằng \[8\sqrt 2 {\rm{ }}\left( {\rm{m}} \right)\] khi \[x - 2 = 0\] hay \[x = 2{\rm{ }}\left( {\rm{m}} \right).\]

Vậy khoảng cách từ \[A\] đến \[E\] bằng \[2{\rm{ m}}\] thì tứ giác \[EFGH\] có chu vi nhỏ nhất.

Câu 3

A. \(d\parallel OA.\)                                
B. \(d \equiv OA.\)  
C. \(d \bot OA\) tại \(A\).                              
D. \(d \bot OA\) tại \(O.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(x \ne - \frac{1}{2}.\)                        
B. \(x \ne - \frac{1}{2}\) \(x \ne 5.\)                      
C. \(x \ne - 5.\)       
D. \(x \ne \frac{1}{2}\)\(x \ne - 5.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(m - 3 > m - 4.\) 

B. \(m - 3 < m - 5.\) 
C. \(m - 3 \ge m - 2.\)                                
D. \(m - 3 \le m - 6.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP