Cho tam giác \(ABC\) có \(\widehat A = 15^\circ \,;\,\,\widehat B = 30^\circ \,;\,\,AB = 15\,\,{\rm{cm}}{\rm{.}}\) Kẻ \(AH \bot BC\) tại \(H.\)
a) Tam giác \(ABC\) là tam giác nhọn.
b) Độ dài \(AH\) là \(7,5\,\,{\rm{cm}}\).
c) Tam giác \(HAC\) là tam giác nhọn.
d) Diện tích tam giác \(ABC\) khoảng \(20\,\,{\rm{c}}{{\rm{m}}^2}\) (khi làm tròn đến hàng đơn vị).
Cho tam giác \(ABC\) có \(\widehat A = 15^\circ \,;\,\,\widehat B = 30^\circ \,;\,\,AB = 15\,\,{\rm{cm}}{\rm{.}}\) Kẻ \(AH \bot BC\) tại \(H.\)
a) Tam giác \(ABC\) là tam giác nhọn.
b) Độ dài \(AH\) là \(7,5\,\,{\rm{cm}}\).
c) Tam giác \(HAC\) là tam giác nhọn.
d) Diện tích tam giác \(ABC\) khoảng \(20\,\,{\rm{c}}{{\rm{m}}^2}\) (khi làm tròn đến hàng đơn vị).
Quảng cáo
Trả lời:

a) Sai. Xét \(\Delta ABC\) có \(\widehat A = 15^\circ \,;\,\,\widehat B = 30^\circ \) nên \(\widehat C = 180^\circ - 15^\circ - 30^\circ = 135^\circ \).
Tam giác \(ABC\) có \(\widehat C\) là góc tù nên tam giác \(ABC\) là tam giác tù.
b) Đúng. Xét \(\Delta HAB\) vuông tại \(H\) có: \(AH = AB \cdot \sin 30^\circ = 7,5\,\,({\rm{cm}}).\)
c) Đúng. Xét \(\Delta HAC\) vuông tại \(H\) có \(\widehat {ACH} = \widehat B + \widehat {CAB} = 45^\circ \) hay \(\Delta HAC\) vuông cân tại \(H.\)
d) Sai. Xét \(\Delta HAB\) vuông tại \(H\) có:\(BH = AB \cdot \cos 30^\circ = \frac{{15\sqrt 3 }}{2}\,\,({\rm{cm}}).\)
Vì \(\Delta HAC\)vuông cân tại \(H\) nên \(CH = 7,5\,\,{\rm{cm}}{\rm{.}}\)
Khi đó, \(BC = BH - CH \approx 5,49\,\,({\rm{cm}}).\)
Vậy \({S_{ABC}} = \frac{1}{2} \cdot AH \cdot BC = \frac{1}{2} \cdot 7,5 \cdot 5,49 = 20,59\,\,\left( {{\rm{c}}{{\rm{m}}^{\rm{2}}}} \right) \approx 21\,\,\left( {{\rm{c}}{{\rm{m}}^{\rm{2}}}} \right)\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đặt \(CH = x\,\,(\;{\rm{m}}),\,\,x > 0\).
• Xét \(\Delta HBC\) vuông tại \[H,\] ta có:
\(\tan \widehat {CBH} = \frac{{CH}}{{BH}}\) hay \(\tan 52^\circ = \frac{x}{{BH}}\) nên \(BH = \frac{x}{{\tan 52^\circ }}\).
• Xét \(\Delta HAC\) vuông tại \[H,\] ta có:
\(\tan \widehat {CAH} = \frac{{CH}}{{AH}}\) hay \(\tan 41^\circ = \frac{x}{{AH}}\) nên \(AH = \frac{x}{{\tan 41^\circ }}\).
Ta có: \(HB + HA = AB\)
\(\frac{x}{{\tan 52^\circ }} + \frac{x}{{\tan 41^\circ }} = 150\)
\(x\left( {\frac{1}{{\tan 52^\circ }} + \frac{1}{{\tan 41^\circ }}} \right) = 150\)
\[x = \frac{{150}}{{\frac{1}{{\tan 52^\circ }} + \frac{1}{{\tan 41^\circ }}}} \approx 78\;\,({\rm{m)}}.\]
Vậy độ cao máy bay là \[78{\rm{ m}}.\]
Đáp án: 78.
Lời giải
Xét \(\Delta ABC\) vuông tại \(B\), ta có:
\[\sin A = \frac{{BC}}{{AC}}\] hay \[\sin 24^\circ = \frac{{BC}}{{0,6}}\] nên \[BC = 0,6 \cdot \sin 24^\circ = 0,24\,\,({\rm{m}})\].
Vậy mặt bàn viết được nâng lên \(0,24\,\;{\rm{m}}{\rm{.}}\)
Đáp án: 0,24.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.




![Chọn D Ta có, góc tạo bởi cạnh \[AB\] và phương năm ngang trên mặt đất là \[\widehat {ABH}\]. Xét tam giác \[ABH\] vuôn (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/10/8-1761181578.png)
