Một người đang ở trên tầng thượng của một tòa nhà quan sát con đường chạy thẳng đến chân tòa nhà. Anh ta nhìn thấy một người điều khiển chiếc xe máy đi về phía tòa nhà với phương nhìn tạo với phương nằm ngang một góc bằng \[30^\circ \]. Sau \[6\] phút, người quan sát vẫn nhìn thấy người điều khiển chiếc xe máy với phương nhìn tạo với phương nằm ngang một góc bằng \[60^\circ \]. Hỏi sau bao nhiêu phút nữa thì xe máy sẽ chạy đến chân tòa nhà? Cho biết vận tốc xe máy không đổi.

Một người đang ở trên tầng thượng của một tòa nhà quan sát con đường chạy thẳng đến chân tòa nhà. Anh ta nhìn thấy một người điều khiển chiếc xe máy đi về phía tòa nhà với phương nhìn tạo với phương nằm ngang một góc bằng \[30^\circ \]. Sau \[6\] phút, người quan sát vẫn nhìn thấy người điều khiển chiếc xe máy với phương nhìn tạo với phương nằm ngang một góc bằng \[60^\circ \]. Hỏi sau bao nhiêu phút nữa thì xe máy sẽ chạy đến chân tòa nhà? Cho biết vận tốc xe máy không đổi.
Quảng cáo
Trả lời:

Do mặt đất là phương ngang nên \[\widehat {BCA} = 30^\circ \] và \[\widehat {BDA} = 60^\circ \].
Gọi \[x\] (m/phút) là vận tốc xe máy, điều kiện \[x > 0\].
Vì xe máy đi từ \[C\] đến \[D\] trong \[6\] phút nên \[CD = 6x\,\,\left( {\rm{m}} \right)\]
• Xét \[\Delta ABC\] vuông tại \[A\], ta có:
\[AC = AB \cdot \cot \widehat {BCA} = AB \cdot \cot 30^\circ = AB \cdot \tan 60^\circ = \sqrt 3 AB\] (do \[\cot 30^\circ = \tan 60^\circ \]) \[\left( 1 \right)\]
• Xét \[\Delta ABD\] vuông tại \[A\], ta có:
\[AD = AB \cdot \,\cot \widehat {BDA} = AB \cdot \,\cot 60^\circ = AB \cdot \tan 30^\circ = \frac{{\sqrt 3 AB}}{3}\] (do \[\cot 60^\circ = \tan 30^\circ \]) \[\left( 2 \right)\]
Từ \[\left( 1 \right)\] và \[\left( 2 \right)\] suy ra \[AC - AD = AB\left( {\sqrt 3 - \frac{{\sqrt 3 }}{3}} \right)\] nên \[CD = \frac{{2\sqrt 3 }}{3}AB\].
Ta có \[\frac{{AD}}{{CD}} = \frac{{\sqrt 3 AB}}{3}:\frac{{2\sqrt 3 }}{3}AB = \frac{1}{2}\].
Suy ra \[AD = \frac{1}{2}CD = \frac{1}{2} \cdot 6x = 3x\,\,({\rm{m}}).\]
Vậy thời gian để xe máy chạy từ \[D\] đến tòa nhà là \[\frac{{3x}}{x} = 3\] (phút).
Đáp án: 3.
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đặt \(CH = x\,\,(\;{\rm{m}}),\,\,x > 0\).
• Xét \(\Delta HBC\) vuông tại \[H,\] ta có:
\(\tan \widehat {CBH} = \frac{{CH}}{{BH}}\) hay \(\tan 52^\circ = \frac{x}{{BH}}\) nên \(BH = \frac{x}{{\tan 52^\circ }}\).
• Xét \(\Delta HAC\) vuông tại \[H,\] ta có:
\(\tan \widehat {CAH} = \frac{{CH}}{{AH}}\) hay \(\tan 41^\circ = \frac{x}{{AH}}\) nên \(AH = \frac{x}{{\tan 41^\circ }}\).
Ta có: \(HB + HA = AB\)
\(\frac{x}{{\tan 52^\circ }} + \frac{x}{{\tan 41^\circ }} = 150\)
\(x\left( {\frac{1}{{\tan 52^\circ }} + \frac{1}{{\tan 41^\circ }}} \right) = 150\)
\[x = \frac{{150}}{{\frac{1}{{\tan 52^\circ }} + \frac{1}{{\tan 41^\circ }}}} \approx 78\;\,({\rm{m)}}.\]
Vậy độ cao máy bay là \[78{\rm{ m}}.\]
Đáp án: 78.
Lời giải
a) Đúng. Xét \[\Delta AHC\] vuông tại \[H\] có \[CH = AH \cdot \tan A = AH \cdot \tan 42^\circ .\]
b) Sai. Tứ giác \[ABDH\] là hình chữ nhật nên \(BD = AH.\)
Xét \[\Delta BDC\] vuông tại \[D\] có \[CD = BD \cdot \tan \widehat {CBD} = AH \cdot \tan 21^\circ 30'\].
c) Sai. Ta có \(CH - CD = AB\) nên \[AH \cdot \tan 42^\circ - AH \cdot \tan 21^\circ 30' = 70\]
\[AH\left( {\tan 42^\circ - \tan 21^\circ 30'} \right) = 70\]
\[AH = \frac{{70}}{{\tan 42^\circ - \tan 21^\circ 30'}} \approx {\rm{138,21}}\,\,{\rm{(m)}}{\rm{.}}\]
Do đó \[CH = AH \cdot \tan 42^\circ \approx 138,21 \cdot \tan 42^\circ \approx 124\,\,{\rm{(m)}}\]O10-2024-GV154.
Vậy chiều cao của ngọn núi là \[124\,\,{\rm{m}}{\rm{.}}\]
d) Đúng. Ngọn núi cao hơn tòa nhà là: \[124 - 70 = 54\,\,({\rm{m)}}{\rm{.}}\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.