Câu hỏi:

23/10/2025 129 Lưu

Bạn Nam đứng ở sân thượng nhà mình, cách cây xoài một khoảng \(AE = 20\;\,{\rm{m}}\) và quan sát thấy đỉnh cây \[B\] với góc \(30^\circ \) và gốc cây \[A\] với góc \(35^\circ \) so với phương ngang. Tính chiều cao \[AB\] của cây xoài đó (kết quả làm tròn hàng đơn vị của mét).

Bạn Nam đứng ở sân thượng nhà mình, cách cây xoài một kh (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Tứ giác \[ADEC\] là hình chữ nhật nên \(DA = EC = 20\;\,{\rm{m}}\).

• Xét \(\Delta ACD\) vuông tại \[A,\] ta có:

\[\tan \widehat {ADC} = \frac{{AC}}{{AD}}\] hay \[\tan 35^\circ  = \frac{{AC}}{{20}}\] nên \[AC = 20 \cdot \tan 35^\circ  \approx 14\;\,({\rm{m}})\].

• Xét \(\Delta ABD\) vuông tại A, ta có:

\[\tan \widehat {ADB} = \frac{{AB}}{{AD}}\] hay \[\tan 30^\circ  = \frac{{AB}}{{20}}\] nên \[AB = 20 \cdot \tan 30^\circ  \approx 12\;\,({\rm{m}})\].

Do đó \(BC = BA + AC = 14 + 12 = 26\;\,\,({\rm{m)}}{\rm{.}}\)

Vậy chiều cao \[AB\] của cây xoài là \[26{\rm{ m}}.\]

Đáp án: 26.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đặt \(CH = x\,\,(\;{\rm{m}}),\,\,x > 0\).

• Xét \(\Delta HBC\) vuông tại \[H,\] ta có:

\(\tan \widehat {CBH} = \frac{{CH}}{{BH}}\) hay \(\tan 52^\circ  = \frac{x}{{BH}}\) nên \(BH = \frac{x}{{\tan 52^\circ }}\).

• Xét \(\Delta HAC\) vuông tại \[H,\] ta có:

\(\tan \widehat {CAH} = \frac{{CH}}{{AH}}\) hay \(\tan 41^\circ  = \frac{x}{{AH}}\) nên \(AH = \frac{x}{{\tan 41^\circ }}\).

Ta có: \(HB + HA = AB\)

\(\frac{x}{{\tan 52^\circ }} + \frac{x}{{\tan 41^\circ }} = 150\)

\(x\left( {\frac{1}{{\tan 52^\circ }} + \frac{1}{{\tan 41^\circ }}} \right) = 150\)

\[x = \frac{{150}}{{\frac{1}{{\tan 52^\circ }} + \frac{1}{{\tan 41^\circ }}}} \approx 78\;\,({\rm{m)}}.\]

Vậy độ cao máy bay là \[78{\rm{ m}}.\]

Đáp án: 78.

Lời giải

Cho tam giác \(ABC\) có \(\widehat A (ảnh 1)

a) Sai. Xét \(\Delta ABC\) có \(\widehat A = 15^\circ \,;\,\,\widehat B = 30^\circ \) nên \(\widehat C = 180^\circ  - 15^\circ  - 30^\circ  = 135^\circ \).

Tam giác \(ABC\) có \(\widehat C\) là góc tù nên tam giác \(ABC\) là tam giác tù.

b) Đúng. Xét \(\Delta HAB\) vuông tại \(H\) có: \(AH = AB \cdot \sin 30^\circ  = 7,5\,\,({\rm{cm}}).\)

c) Đúng. Xét \(\Delta HAC\) vuông tại \(H\) có \(\widehat {ACH} = \widehat B + \widehat {CAB} = 45^\circ \) hay \(\Delta HAC\) vuông cân tại \(H.\)

d) Sai. Xét \(\Delta HAB\) vuông tại \(H\) có:\(BH = AB \cdot \cos 30^\circ  = \frac{{15\sqrt 3 }}{2}\,\,({\rm{cm}}).\)

Vì \(\Delta HAC\)vuông cân tại \(H\) nên \(CH = 7,5\,\,{\rm{cm}}{\rm{.}}\)

Khi đó, \(BC = BH - CH \approx 5,49\,\,({\rm{cm}}).\)

Vậy \({S_{ABC}} = \frac{1}{2} \cdot AH \cdot BC = \frac{1}{2} \cdot 7,5 \cdot 5,49 = 20,59\,\,\left( {{\rm{c}}{{\rm{m}}^{\rm{2}}}} \right) \approx 21\,\,\left( {{\rm{c}}{{\rm{m}}^{\rm{2}}}} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\widehat {ABH} \approx 67^\circ .\)         
B. \(\widehat {ABH} \approx 69^\circ .\)                             
C. \(\widehat {ABH} \approx 66^\circ .\)                             
D. \(\widehat {ABH} \approx 68^\circ .\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP