Câu hỏi:

23/10/2025 9 Lưu

Cho tam giác \[ABC\] vuông tại \[A\]\[BC = 12{\rm{\;cm}},\,\,\widehat B = 40^\circ .\] Kết quả nào sau đây là đúng?

A. \[AC \approx 9,19\,\,{\rm{cm}};\,\,\widehat {C\,} = 50^\circ .\]             
B. \[AC \approx 7,71{\rm{\;cm}};\,\,\widehat {C\,} = 50^\circ .\]
C. \[AC \approx 9,1\,\,{\rm{cm}};\,\,\widehat {C\,} = 50^\circ .\]                
D. \[AC \approx 7,8{\rm{\;cm}};\,\,\widehat {C\,} = 50^\circ .\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn B

Chọn B   Vì tam giác \[ABC\] vuông tại \[A\] nên \[AC = BC.\sin B = 12.\sin 40^\circ  \approx 7,71\] (cm). Tam giác \[A (ảnh 1)

Vì tam giác \[ABC\] vuông tại \[A\] nên \[AC = BC.\sin B = 12.\sin 40^\circ  \approx 7,71\] (cm).

Tam giác \[ABC\] vuông tại \[A\] nên \[\widehat B + \widehat C = 90^\circ \] (tổng hai góc nhọn của tam giác vuông).

Suy ra \[\widehat C = 90^\circ  - \widehat B = 90^\circ  - 40^\circ  = 50^\circ .\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Đặt \(AH = x\,\,(\;{\rm{m}}),\,\,x > 0\).

• Xét \(\Delta ABH\) vuông tại \[H,\] ta có:

\(\tan C = \frac{{AH}}{{CH}}\) hay \(\tan 35^\circ  = \frac{x}{{CH}}\) nên \(CH = \frac{x}{{\tan 35^\circ }}\).

• Xét \(\Delta BCH\) vuông tại \[H,\] ta có:

\(\tan B = \frac{{AH}}{{BH}}\) hay \(\tan 45^\circ  = \frac{x}{{BH}}\) nên \(BH = \frac{x}{{\tan 45^\circ }}\).

Ta có: \[BH + CH = BC\]

\[\frac{x}{{\tan 35^\circ }} + \frac{x}{{\tan 45^\circ }} = 3,58\]

\[x\left( {\frac{1}{{\tan 35^\circ }} + \frac{1}{{\tan 45^\circ }}} \right) = 3,58\]

\(x = \frac{{3,58}}{{\frac{1}{{\tan 35^\circ }} + \frac{1}{{\tan 45^\circ }}}} \approx 1,44\;\,({\rm{m)}}{\rm{.}}\)

Độ cao của cầu trượt là \(1,44\;\,{\rm{m}}{\rm{.}}\)

Đáp án: 1,44.

Câu 2

A. \[\alpha = {\rm{5}}^\circ {\rm{30'}}\].      
B. \[\alpha \approx {\rm{5}}^\circ 20'\].                          
C. \[\alpha \approx {\rm{5}}^\circ 31'\].                          
D. \[\alpha \approx {\rm{5}}^\circ 29'\].

Lời giải

Chọn D

Tam giác \[AHB\] vuông tại \[H\] có \[\tan A = \tan \alpha  = \frac{{BH}}{{AH}} = \frac{{2,4}}{{25}} = \frac{{11}}{{125}}\] nên \[\alpha  \approx {\rm{5}}^\circ 29'.\]

Vậy góc tạo bởi đường đi của quả bóng và mặt đất là \[\alpha  \approx {\rm{5}}^\circ 29'.\]

Câu 4

A. \(b = a\,\sin B\).        
B. \(b = a\,\sin C\).      
C. \(b = a\,\cos B\).                   
D. \(b = a\,\tan B\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[\tan B = \frac{{4\sqrt {41} }}{{41}}.\]                  
B. \[\tan B = \frac{4}{3}.\]             
C. \[\tan B = \frac{3}{4}.\]             
D. \[\tan B = \frac{4}{5}.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[4\;\,{\rm{m}}.\] 
B. \[5\] m.                
C. \[6\] m.                              
D. \[7\] m.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP