Câu hỏi:

24/10/2025 63 Lưu

Để làm thí nghiệm về chuyển động trong mặt phẳng nghiêng, người làm thí nghiệm đã thiết lập sẵn một hệ tọa độ Oxyz. Góc giữa mặt phẳng nghiêng (P): \(4x + 11z + 5 = 0\) và mặt sàn (Q): z – 1 = 0 là bao nhiêu độ (làm tròn kết quả đến hàng đơn vị của độ)?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Mặt phẳng (P) có một vectơ pháp tuyến là \(\overrightarrow {{n_P}} = \left( {4;0;11} \right)\).

Mặt phẳng (Q) có một vectơ pháp tuyến là \(\overrightarrow {{n_Q}} = \left( {0;0;1} \right)\).

Khi đó \(\cos \left( {\left( P \right),\left( Q \right)} \right) = \frac{{\left| {11} \right|}}{{\sqrt {{4^2} + {{11}^2}} }} = \frac{{11}}{{\sqrt {137} }}\) \( \Rightarrow \left( {\left( P \right),\left( Q \right)} \right) \approx 20^\circ \).

Trả lời: 20.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Vectơ \(\overrightarrow {AB} = \left( {300;50; - 50} \right)\) nên \(\overrightarrow u = \left( {6;1; - 1} \right)\) là một vectơ chỉ phương của đường thẳng AB.

Phương trình đường thẳng AB là \(\frac{{x + 500}}{6} = \frac{{y + 250}}{1} = \frac{{z - 150}}{{ - 1}}\).

Gọi H là hình chiếu của điểm O trên đường thẳng AB thì OH là khoảng cách ngắn nhất giữa máy bay và đài kiểm soát. Khi đó \(H\left( {6t - 500;t - 250; - t + 150} \right)\).

Ta có \(\overrightarrow {OH} .\overrightarrow u = \left( {6t - 500} \right).6 + \left( {t - 250} \right).1 + \left( { - t + 150} \right).\left( { - 1} \right) = 0\)\( \Leftrightarrow t = \frac{{1700}}{{19}}\).

Suy ra tọa độ của vị trí máy bay khi đó là \(\left( {\frac{{700}}{{19}}; - \frac{{3050}}{{19}};\frac{{1150}}{{19}}} \right)\).

Vậy \( - 3a - b - c = - \frac{{200}}{{19}} \approx - 11\).

Trả lời: −11.

Lời giải

Đường thẳng AB có vectơ chỉ phương là \(\overrightarrow u = \left( {3;4; - 1} \right)\), mặt phẳng \(\left( {Oxy} \right)\) có vectơ pháp tuyến là \(\overrightarrow n = \left( {0;0;1} \right)\).

Góc α giữa đường bay (một phần của đường thẳng AB) và sân bay (một phần của mặt phẳng (Oxy)).

Ta có \(\sin \alpha = \frac{1}{{\sqrt {26} }} \Rightarrow \alpha \approx 11^\circ \).

Trả lời: 11.

Câu 5

\(\left\{ \begin{array}{l}x = 1 + 2t\\y = 2 + t\\z = - 3 - 2t\end{array} \right.\).

\(\left\{ \begin{array}{l}x = 3 + t\\y = 1 + 2t\\z = - 7 + 3t\end{array} \right.\).

\(\left\{ \begin{array}{l}x = - 1 + 2t\\y = 1 + t\\z = 5 - 2t\end{array} \right.\).

\(\left\{ \begin{array}{l}x = 2 + t\\y = 1 + 2t\\z = - 2 + 3t\end{array} \right.\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP