Câu hỏi:

25/10/2025 11 Lưu

Trong không gian Oxyz, một vectơ pháp tuyến của mặt phẳng \(\frac{x}{{ - 2}} + \frac{y}{{ - 1}} + \frac{z}{3} = 1\) là

\(\overrightarrow n = \left( { - 3; - 6; - 2} \right)\).

\(\overrightarrow n = \left( { - 2; - 1;3} \right)\).

\(\overrightarrow n = \left( {2; - 1;3} \right)\).

\(\overrightarrow n = \left( {3;6; - 2} \right)\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng: D

\(\frac{x}{{ - 2}} + \frac{y}{{ - 1}} + \frac{z}{3} = 1\)\( \Leftrightarrow - 3x - 6y + 2z - 6 = 0\)\( \Leftrightarrow 3x + 6y - 2z + 6 = 0\).

Do đó mặt phẳng \(3x + 6y - 2z + 6 = 0\) nhận \(\overrightarrow n = \left( {3;6; - 2} \right)\) làm một vectơ pháp tuyến.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Giả sử A(a; 0; 0), B(0; b; 0), C(0; 0; c) với a, b, c > 0.

Phương trình mặt phẳng (P): \(\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1\).

Ta có OA + OB + OC = a + b + c.

Vì M(1; 4; 9) ∈ (P) \( \Rightarrow \frac{1}{a} + \frac{4}{b} + \frac{9}{c} = 1\).

Ta có \(\left( {\frac{1}{a} + \frac{4}{b} + \frac{9}{c}} \right)\left( {a + b + c} \right) \ge {\left( {1 + 2 + 3} \right)^2}\) \(a + b + c \ge 36\).

Dấu “=” xảy ra khi \(\left\{ \begin{array}{l}\frac{1}{a} + \frac{4}{b} + \frac{9}{c} = 1\\\frac{1}{a} = \frac{2}{b} = \frac{3}{c}\end{array} \right.\)\( \Rightarrow \left\{ \begin{array}{l}a = 6\\b = 12\\c = 18\end{array} \right.\).

Khi đó phương trình mặt phẳng (P): \(\frac{x}{6} + \frac{y}{{12}} + \frac{z}{{18}} = 1\)\( \Leftrightarrow 6x + 3y + 2z - 36 = 0\).

Vậy \(d\left( {O,\left( P \right)} \right) = \frac{{\left| { - 36} \right|}}{{\sqrt {36 + 9 + 4} }} = \frac{{36}}{7} \approx 5,14\).

Trả lời: 5,14.

Lời giải

Dựa vào hệ trục tọa độ đã vẽ, ta có \(A\left( {0;0;0} \right),B\left( {2;0;0} \right),D\left( {0;2;0} \right),S\left( {0;0;3} \right),C\left( {2;2;0} \right)\).

Ta có \(\overrightarrow {SC} = \left( {2;2; - 3} \right),\overrightarrow {SD} = \left( {0;2; - 3} \right),\left[ {\overrightarrow {SC} ,\overrightarrow {SD} } \right] = \left( {0;6;4} \right) = 2\left( {0;3;2} \right) = 2\overrightarrow n \).

Mặt phẳng (SCD) đi qua điểm S nhận \(\overrightarrow n = \left( {0;3;2} \right)\) làm vectơ pháp tuyến có phương trình

\(3y + 2\left( {z - 3} \right) = 0 \Leftrightarrow 3y + 2z - 6 = 0\).

Khi đó \(d\left( {A,\left( {SCD} \right)} \right) = \frac{{\left| { - 6} \right|}}{{\sqrt {{3^2} + {2^2}} }} \approx 1,67\).

Trả lời: 1,67.

Ta có \(\overrightarrow {SC} = \left( {2;2; - 3} \right),\overrightarrow {SD} = \left( {0;2; - 3} \right),\left[ {\overrightarrow {SC} ,\overrightarrow {SD} } \right] = \left( {0;6;4} \right) = 2\left( {0;3;2} \right) = 2\overrightarrow n \).
 

Câu 4

\(M\left( { - 1; - 1; - 1} \right)\).

\(N\left( {1;1;1} \right)\).

\(P\left( { - 3;0;0} \right)\).

\(Q\left( {0;0; - 3} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A.

\(\frac{x}{3} + \frac{y}{4} + \frac{z}{5} = 1\).

B.

\(\frac{x}{3} = \frac{y}{4} = \frac{z}{5}\).

C.

\(\frac{x}{3} + \frac{y}{4} - \frac{z}{5} = 1\).

D.

\(\frac{x}{3} - \frac{y}{4} - \frac{z}{5} = 1\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP