Trong không gian Oxyz, một vectơ pháp tuyến của mặt phẳng \(\frac{x}{{ - 2}} + \frac{y}{{ - 1}} + \frac{z}{3} = 1\) là
\(\overrightarrow n = \left( { - 3; - 6; - 2} \right)\).
\(\overrightarrow n = \left( { - 2; - 1;3} \right)\).
\(\overrightarrow n = \left( {2; - 1;3} \right)\).
\(\overrightarrow n = \left( {3;6; - 2} \right)\).
Quảng cáo
Trả lời:
Đáp án đúng: D
\(\frac{x}{{ - 2}} + \frac{y}{{ - 1}} + \frac{z}{3} = 1\)\( \Leftrightarrow - 3x - 6y + 2z - 6 = 0\)\( \Leftrightarrow 3x + 6y - 2z + 6 = 0\).
Do đó mặt phẳng \(3x + 6y - 2z + 6 = 0\) nhận \(\overrightarrow n = \left( {3;6; - 2} \right)\) làm một vectơ pháp tuyến.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Giả sử A(a; 0; 0), B(0; b; 0), C(0; 0; c) với a, b, c > 0.
Phương trình mặt phẳng (P): \(\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1\).
Ta có OA + OB + OC = a + b + c.
Vì M(1; 4; 9) ∈ (P) \( \Rightarrow \frac{1}{a} + \frac{4}{b} + \frac{9}{c} = 1\).
Ta có \(\left( {\frac{1}{a} + \frac{4}{b} + \frac{9}{c}} \right)\left( {a + b + c} \right) \ge {\left( {1 + 2 + 3} \right)^2}\) \(a + b + c \ge 36\).
Dấu “=” xảy ra khi \(\left\{ \begin{array}{l}\frac{1}{a} + \frac{4}{b} + \frac{9}{c} = 1\\\frac{1}{a} = \frac{2}{b} = \frac{3}{c}\end{array} \right.\)\( \Rightarrow \left\{ \begin{array}{l}a = 6\\b = 12\\c = 18\end{array} \right.\).
Khi đó phương trình mặt phẳng (P): \(\frac{x}{6} + \frac{y}{{12}} + \frac{z}{{18}} = 1\)\( \Leftrightarrow 6x + 3y + 2z - 36 = 0\).
Vậy \(d\left( {O,\left( P \right)} \right) = \frac{{\left| { - 36} \right|}}{{\sqrt {36 + 9 + 4} }} = \frac{{36}}{7} \approx 5,14\).
Trả lời: 5,14.
Lời giải
Những điểm thuộc đường nóc nhà có tọa độ thỏa mãn hệ \(\left\{ \begin{array}{l}x - 2y + 5 = 0\\x - 2y - 3z + 20 = 0\end{array} \right.\).
Từ phương trình thứ nhất chọn \(x = - 5 \Rightarrow y = 0\)thay vào phương trình còn lại ta được \(z = 5\).
Vậy điểm A(−5; 0; 5) là một điểm thuộc đường nóc nhà.
Khi đó chiều cao cần tìm của ngôi nhà là khoảng cách từ điểm A đến mặt phẳng (Oxy) và bằng 5.
Trả lời: 5.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
(3; −5; −1).
(2; 3; −1).
(3; 5; −2).
(2; −3; −1).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
\(\frac{x}{3} + \frac{y}{4} + \frac{z}{5} = 1\).
\(\frac{x}{3} = \frac{y}{4} = \frac{z}{5}\).
\(\frac{x}{3} + \frac{y}{4} - \frac{z}{5} = 1\).
\(\frac{x}{3} - \frac{y}{4} - \frac{z}{5} = 1\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

