Câu hỏi:

25/10/2025 31 Lưu

Trong không gian \(Oxyz\), mặt cầu \((S)\): \({x^2} + {y^2} + {z^2} - 2x - 2y + 4z + 3 = 0\) có bán kính là:

\(\sqrt 3 \).

\(3\).

\(9\).

\(\sqrt {21} \).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng: A

\({x^2} + {y^2} + {z^2} - 2x - 2y + 4z + 3 = 0\)\( \Leftrightarrow {\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z + 2} \right)^2} = 3\) .

Bán kính của mặt cầu (S) là \(R = \sqrt 3 \) .

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Vùng phủ sáng chính là hình cầu tâm I bán kính R = 4000.

Khi đó tọa độ điểm H chính là giao điểm của đường thẳng ID và mặt cầu tâm I, bán kính R.

Ta có phương trình mặt cầu (S) là \({\left( {x - 21} \right)^2} + {\left( {y - 35} \right)^2} + {\left( {z - 50} \right)^2} = {4000^2}\).

Đường thẳng ID đi qua điểm I(21; 35; 50) và nhận \(\overrightarrow {ID} = \left( {5100;623; - 50} \right)\) làm vectơ chỉ phương có phương trình là \(\left\{ \begin{array}{l}x = 21 + 5100t\\y = 35 + 623t\\z = 50 - 50t\end{array} \right.\).

Vì H  ID \( \Rightarrow H\left( {21 + 5100t;35 + 623t;50 - 50t} \right)\).

Mà H  (S) nên \({\left( {5100t} \right)^2} + {\left( {623t} \right)^2} + {\left( { - 50t} \right)^2} = {4000^2}\)\( \Leftrightarrow 26400629{t^2} = {4000^2}\)\( \Leftrightarrow t \approx \pm 0,78\).

Với \(t \approx - 0,78\)\( \Rightarrow H\left( { - 3957; - 450,94;89} \right)\) và \(\overrightarrow {IH} = \left( { - 3978; - 485,94;39} \right)\).

Khi đó \(\overrightarrow {ID} = - \frac{{50}}{{39}}\overrightarrow {IH} \) nên hai vectơ \(\overrightarrow {ID} ,\overrightarrow {IH} \) ngược hướng.

Vậy H không thuộc đoạn thẳng ID.

Với \(t \approx 0,78\)\( \Rightarrow H\left( {3900;520,94;11} \right)\) và \(\overrightarrow {IH} = \left( {3978;485,94; - 39} \right)\).

Khi đó \(\overrightarrow {ID} = \frac{{50}}{{39}}\overrightarrow {IH} \) nên hai vectơ \(\overrightarrow {ID} ,\overrightarrow {IH} \) cùng hướng.

Vậy H thuộc đoạn thẳng ID.

Vậy ví trí cuối cùng trên đoạn ID sao cho người đi biển còn có thể nhìn thấy được ánh sáng từ ngọn hải đăng là điểm \(H\left( {3900;520,94;11} \right)\) có cao độ là 11.

Trả lời: 11.

Câu 2

\({\vec u_2} = \left( {1; - 2;1} \right)\).

\({\vec u_1} = \left( { - 1;2; - 1} \right)\).

\({\vec u_4} = \left( {3;2;4} \right)\).

\({\vec u_3} = \left( {3; - 2;4} \right)\).

Lời giải

Đáp án đúng: D

\({\vec u_3} = \left( {3; - 2;4} \right)\)là một vectơ chỉ phương của △.

Câu 7

\({\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z - 3} \right)^2} = 9\).

\({\left( {x + 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z + 3} \right)^2} = 3\).

\({\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z - 3} \right)^2} = 3\).

\({\left( {x + 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z + 3} \right)^2} = 9\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP