Câu hỏi:

26/10/2025 84 Lưu

Phần III. Trắc nghiệm trả lời ngắn

Người ta ghi lại tuổi thọ của một số con ong cho kết quả như sau:

Tuổi thọ (ngày)

\(\left[ {0\,;20} \right)\)

\(\left[ {20\,;40} \right)\)

\(\left[ {40\,;60} \right)\)

\(\left[ {60\,;80} \right)\)

\(\left[ {80\,;100} \right)\)

Số lượng

5

12

23

31

29

Tìm khoảng tứ phân vị của mẫu số liệu (làm tròn kết quả đến hàng phần mười).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có bảng mẫu số liệu:

Nhóm

Tần số

Tần số tích lũy

\(\left[ {0\,;20} \right)\)

5

5

\(\left[ {20\,;40} \right)\)

12

17

\(\left[ {40\,;60} \right)\)

23

40

\(\left[ {60\,;80} \right)\)

31

71

\(\left[ {80\,;100} \right)\)

29

100

 

\(n = 100\)

 

Ta có: \(\frac{n}{4} = 25\). Nhóm 3 là nhóm đầu tiên có tần số tích lũy lớn hơn \(25\).

Tứ phân vị thứ nhất \({Q_1}\) của mẫu số liệu là:

\({Q_1} = s + \left( {\frac{{25 - c{f_2}}}{{{n_3}}}} \right).\,h = 40 + \left( {\frac{{25 - 17}}{{23}}} \right).\,20 = \frac{{1080}}{{23}} \approx 47\).

Ta có: \(\frac{{3n}}{4} = 75\). Nhóm 5 là nhóm đầu tiên có tần số tích lũy lớn hơn \(75\).

Tứ phân vị thứ ba \({Q_3}\) của mẫu số liệu là:

\({Q_3} = t + \left( {\frac{{75 - c{f_4}}}{{{n_5}}}} \right).\,l = 80 + \left( {\frac{{75 - 71}}{{29}}} \right).\,20 = \frac{{2400}}{{29}} \approx 82,8\).

Khoảng tứ phân vị của mẫu số liệu là:

\({\Delta _Q} = {Q_3} - {Q_1} = \frac{{2400}}{{29}} - \frac{{1080}}{{23}} = \frac{{23880}}{{667}} \approx 35,8\).

Trả lời: 35,8.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Khoảng biến thiên của mẫu số liệu ghép nhóm trên là \[R = 40 - 10 = 30\].

b) \(n = 60\).

c) Ta có \(\frac{n}{4} = 15\). Nhóm 1 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 15 nên nhóm này chứa tứ phân vị thứ nhất.

\({Q_1} = 10 + \frac{{15 - 0}}{{15}}.5 = 15\). Do đó \({Q_1} = 15\).

d) Có \(\frac{{3n}}{4} = 45\). Nhóm 4 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 45 nên nhóm này chứa tứ phân vị thứ ba.

Ta có tứ phân vị thứ ba là \[{Q_3} = 25 + \left( {\frac{{45 - 43}}{{10}}} \right).5 = 26\].

Khoảng tứ phân vị của mẫu số liệu ghép nhóm trên là \[{\Delta _Q} = {Q_3} - {Q_1} = 26 - 15 = 9\].

Đáp án: a) Đúng;   b) Đúng;   c) Đúng;   d) Sai.

Lời giải

Khoảng biến thiên của mẫu số liệu ghép nhóm đó là : \(R = 110 - 74 = 36\)(gam).

Số phần tử của mẫu là \[n = 27\].

Nhóm

Tần số

Tần số tích lũy

\(\left[ {74;\;80} \right)\)

\(4\)

4

\(\left[ {80;\;86} \right)\)

\(6\)

10

\(\left[ {86;\;92} \right)\)

\(3\)

13

\(\left[ {92;\;98} \right)\)

\(4\)

17

\(\left[ {98;\;104} \right)\)

\(3\)

20

\(\left[ {104;\;110} \right)\)

\(7\)

27

 

\[n = 27\]

 

 

\(\frac{n}{4} = \frac{{27}}{4} = 6,75\). Nhóm 2 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 6,75 nên nhóm này chứa tứ phân vị thứ nhất.

Áp dụng công thức, ta có tứ phân vị thứ nhất là:\[{Q_1} = 80 + \left( {\frac{{6,75 - 4}}{6}} \right).6 = 82,75\](gam).

\(\frac{{3n}}{4} = 20,25\). Nhóm 6 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 20,25 nên nhóm này chứa tứ phân vị thứ ba.

Áp dụng công thức, ta có tứ phân vị thứ ba là: \[{Q_3} = 104 + \left( {\frac{{20,25 - 20}}{7}} \right).6 = \frac{{1459}}{{14}} \approx 104,2\](gam).

Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm đã cho là:

\[{\Delta _Q} = {Q_3} - {Q_1} \approx 104,2 - 82,75 = 21,45\](gam). Chọn A.

Câu 3

A. \({R_1} = 30\,\,\left( {{\rm{cm}}} \right)\,;\,\,{R_2} = 25\,\,\left( {{\rm{cm}}} \right)\).                                                                   
B. \({R_1} = 30\,\,\left( {{\rm{cm}}} \right)\,;\,\,{R_2} = 30\,\,\left( {{\rm{cm}}} \right)\).
C. \({R_1} = 25\,\,\left( {{\rm{cm}}} \right)\,;\,\,{R_2} = 25\,\,\left( {{\rm{cm}}} \right)\).                                                                   
D. \({R_1} = 12\,\,\left( {{\rm{cm}}} \right)\,;\,\,{R_2} = 9\,\,\left( {{\rm{cm}}} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \[{\Delta _Q}\; = {Q_2} - {Q_1}\].                    
B. \[{\Delta _Q}\; = {Q_3} - {Q_1}\].                                        
C. \[{\Delta _Q}\; = {Q_2} - {Q_3}\].                                        
D. \[{\Delta _Q}\; = {Q_1} - {Q_3}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP