Góc có số đo \({108^0}\) đổi ra radian là:
A. \(\frac{\pi }{{10}}\).
Câu hỏi trong đề: Bộ 19 đề thi Giữa kì 1 Toán 11 có đáp án !!
Quảng cáo
Trả lời:
Chọn C
Do \({108^0} = \frac{{108}}{{180}}\pi \)\( = \frac{3}{5}\pi \)(rad).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có
\(\begin{array}{l}x = {x_A} + {x_B} = 5\cos \left( {50\pi t - \frac{\pi }{6}} \right) + 5\cos \left( {50\pi t + \frac{\pi }{3}} \right) = 2 \cdot 5\cos \left( {50\pi t + \frac{\pi }{{12}}} \right)\cos \left( { - \frac{\pi }{4}} \right){\rm{ }}\\ \Rightarrow {\rm{ }}x = 5\sqrt 2 \cos \left( {50\pi t + \frac{\pi }{{12}}} \right)\end{array}\)
Ta có \(x = 5\sqrt 2 \cos \left( {50\pi t + \frac{\pi }{{12}}} \right) \le 5\sqrt 2 \). Vậy sóng tổng hợp cao nhất khi \(\cos \left( {50\pi t + \frac{\pi }{{12}}} \right) = 1 \Leftrightarrow 50\pi t + \frac{\pi }{{12}} = k2\pi \Leftrightarrow t = - \frac{1}{{600}} + \frac{k}{{25}}\) (giây) với \(k \in {\mathbb{N}^*}\).
Lời giải
|
a) |
S |
b) |
S |
c) |
S |
d) |
Đ |
(Đúng) Đường thẳng \(BC\) song song với \((SAD\)
(Vì): Ta có \(\left\{ {\begin{array}{*{20}{l}}{BC\not \subset (SAD)}\\{BC\parallel AD}\\{AD \subset (SAD)}\end{array}} \right.\) nên \(BC\parallel (SAD)\).
(Sai) \(MO\) là giao tuyến của \((SAC)\) và \((SBD)\)
(Vì):
\( \bullet \) Ta có \(S \in (SBD) \cap (SAC)(1)\).
\( \bullet \) Mà \(\left\{ {\begin{array}{*{20}{l}}{O \in AC \subset (SAC)}\\{O \in BD \subset (SBD)}\end{array}} \right. \Rightarrow O \in (SBD) \cap (SAC)(2)\).
Từ \((1)\) và \((2)\), suy ra \((SBD) \cap (SAC) = SO\).
(Sai) Đường thẳng \(BM\) song song với \((SAD)\)
(Vì):

\(\left\{ {\begin{array}{*{20}{l}}{S \in (SBC) \cap (SAD)}\\{BC \subset (SBC),AD \subset (SAD)}\\{BC\parallel AD}\end{array}} \right. \Rightarrow (SBC) \cap (SAD) = d\parallel BC\parallel AD\;(d{\rm{ di qua }}S)\).
Trong \((SBC)\), gọi \(I\) là giao điểm của \(BM\) và \(d\). Khi đó
\(\left\{ {\begin{array}{*{20}{l}}{I \in BM}\\{I \in d \subset (SAD)}\end{array}} \right. \Rightarrow BM \cap (SAD) = I\).
(Sai) Gọi \(N\) là điểm thuộc cạnh \(SB\) sao cho \(SN = \frac{1}{3}SB\), khi đó \(N\) là giao điểm của đường thẳng \(SB\) và \((AMD)\)
(Vì):

Xét có \(SO\), \(AM\) là trung tuyến nên gọi \(G\) là giao điểm của \(SO\) và \(AM\) thì \(G\) là trọng tâm của .
Xét có \(SO\) là đường trung tuyến và \(SG = 2GO\) nên \(G\) cũng là trọng tâm của .
Trong \((SBD)\), gọi \(J\) là giao điểm của \(DG\) và \(SB\). Khi đó
\(\left\{ {\begin{array}{*{20}{l}}{J \in SB}\\{J \in DG \subset (ADM)}\end{array}} \right. \Rightarrow SB \cap (ADM) = J.\)
Mặt khác, \(G\) là trọng tâm của nên \(J\) là trung điểm của \(SB \Rightarrow SJ = \frac{1}{2}SB\).
Mà \(SN = \frac{1}{3}SB\) nên \(N\) và \(J\) là hai điểm phân biệt.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.