Câu hỏi:

27/10/2025 10 Lưu

Cho phương trình lượng giác \(2\sin \left( {x - \frac{\pi }{{12}}} \right) + \sqrt 3 = 0\), khi đó:

              a) Phương trình tương đương \(\sin \left( {x - \frac{\pi }{{12}}} \right) = \sin \left( {\frac{\pi }{3}} \right)\)

              b) Phương trình có nghiệm là: \(x = \frac{\pi }{4} + k2\pi ;x = \frac{{7\pi }}{{12}} + k2\pi (k \in \mathbb{Z})\).

              c) Phương trình có nghiệm âm lớn nhất bằng \( - \frac{\pi }{4}\)

              d) Số nghiệm của phương trình trong khoảng \(\left( { - \pi ;\pi } \right)\) là hai nghiệm

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a)

S

b)

S

c)

Đ

d)

Đ

 

Ta có: \(2\sin \left( {x - \frac{\pi }{{12}}} \right) + \sqrt 3  = 0 \Leftrightarrow \sin \left( {x - \frac{\pi }{{12}}} \right) =  - \frac{{\sqrt 3 }}{2} \Leftrightarrow \sin \left( {x - \frac{\pi }{{12}}} \right) = \sin \left( { - \frac{\pi }{3}} \right)\)

\( \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x - \frac{\pi }{{12}} =  - \frac{\pi }{3} + k2\pi }\\{x - \frac{\pi }{{12}} = \pi  - ( - \frac{\pi }{3}) + k2\pi }\end{array}(k \in \mathbb{Z}) \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x =  - \frac{\pi }{4} + k2\pi }\\{x = \frac{{17\pi }}{{12}} + k2\pi }\end{array}(k \in \mathbb{Z})} \right.} \right.\)

Vậy phương trình có nghiệm là: \(x =  - \frac{\pi }{4} + k2\pi ;x = \frac{{17\pi }}{{12}} + k2\pi (k \in \mathbb{Z})\).

Phương trình có nghiệm âm lớn nhất bằng \( - \frac{\pi }{4}\)

Số nghiệm của phương trình trong khoảng \(\left( { - \pi ;\pi } \right)\) là hai nghiệm

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Mực nước của kênh cao nhất khi \(h\) lớn nhât:

\( \Leftrightarrow \sin \left( {\frac{{\pi t}}{8} + \frac{{5\pi }}{8}} \right) = 1 \Leftrightarrow \frac{\pi }{8}t + \frac{{5\pi }}{8} = \frac{\pi }{2} + k2\pi  \Leftrightarrow t =  - 1 + 16k\)

Với \(0 < t \le 24\) suy ra \(0 <  - 1 + 16k \le 24 \Leftrightarrow \frac{1}{{16}} < k \le \frac{{25}}{{16}}\)

Do \(k \in \mathbb{Z}\) nên \(k = 1\) thỏa mãn. Khi \(k = 1\) thì \(t = 15h\).

Lời giải

Ta có

\(\begin{array}{l}x = {x_A} + {x_B} = 5\cos \left( {50\pi t - \frac{\pi }{6}} \right) + 5\cos \left( {50\pi t + \frac{\pi }{3}} \right) = 2 \cdot 5\cos \left( {50\pi t + \frac{\pi }{{12}}} \right)\cos \left( { - \frac{\pi }{4}} \right){\rm{ }}\\ \Rightarrow {\rm{ }}x = 5\sqrt 2 \cos \left( {50\pi t + \frac{\pi }{{12}}} \right)\end{array}\)

Ta có \(x = 5\sqrt 2 \cos \left( {50\pi t + \frac{\pi }{{12}}} \right) \le 5\sqrt 2 \). Vậy sóng tổng hợp cao nhất khi \(\cos \left( {50\pi t + \frac{\pi }{{12}}} \right) = 1 \Leftrightarrow 50\pi t + \frac{\pi }{{12}} = k2\pi  \Leftrightarrow t =  - \frac{1}{{600}} + \frac{k}{{25}}\) (giây) với \(k \in {\mathbb{N}^*}\).

Câu 6

A.  3.                           
B.  4.                           
C. \( - 1\).         
D.  0.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP