Câu hỏi:

27/10/2025 40 Lưu

Cung có số đo 250o thì có số đo theo đơn vị rađian là              

A. \(\frac{{35\pi }}{{18}}\).                           
B. \(\frac{{25\pi }}{9}\).               
C. \(\frac{{25\pi }}{{18}}\).                                 
D. \(\frac{{25\pi }}{{12}}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn C

Ta có 250°=π180°.250°=25π18

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tứ diện ABCD. Trên AC,AD lần lượt lấy các điểm M,N sao cho MN không song song với CD. Gọi O là điểm thuộc miền trong tam giác BCD. Tìm giao điểm của đường thẳng BD và mặt phẳng (OMN). (ảnh 1)

Chọn mặt phẳng \(\left( {BCD} \right)\) chứa \(BD\).Trong mặt phẳng \(\left( {ACD} \right)\) gọi \(I = MN \cap CD\).

\(\left\{ \begin{array}{l}I \in MN \subset \left( {OMN} \right)\\I \in CD \subset \left( {BCD} \right)\end{array} \right.\) \( \Rightarrow I \in \left( {OMN} \right) \cap \left( {BCD} \right)\) \( \Rightarrow OI = \left( {BCD} \right) \cap \left( {OMN} \right)\)

Gọi \(J\) là giao điểm của \(OI\) và \(BD\) trong mặt phẳng \(\left( {BCD} \right)\).

\( \Rightarrow \left\{ \begin{array}{l}J \in BD\\J \in OI \subset \left( {OMN} \right)\end{array} \right.\)\( \Rightarrow J = BD \cap \left( {OMN} \right)\).

Lời giải

Chiều cao của mực nước cao nhất là \(m + a\) khi \({\rm{cos}}\left( {\frac{\pi }{{12}}t} \right) = 1\) và thấp nhất bằng \(m - a\) khi \({\rm{cos}}\left( {\frac{\pi }{{12}}t} \right) =  - 1\). Theo giả thiết, ta có: \(\left\{ {\begin{array}{*{20}{l}}{m + a = 16}\\{m - a = 10}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{m = 13}\\{a = 3.}\end{array}} \right.} \right.\)

Từ câu a ta có công thức: \(h = 13 + 3{\rm{cos}}\left( {\frac{\pi }{{12}}t} \right)\). Do chiều cao của mực nước là 11,5 m nên \(13 + 3{\rm{cos}}\left( {\frac{\pi }{{12}}t} \right) = 11,5 \Leftrightarrow {\rm{cos}}\left( {\frac{\pi }{{12}}t} \right) =  - \frac{1}{2}\)

\( \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{\frac{\pi }{{12}}t = \frac{{2\pi }}{3} + k2\pi }\\{\frac{\pi }{{12}}t =  - \frac{{2\pi }}{3} + k2\pi }\end{array}\left( {k \in \mathbb{Z}} \right) \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{t = 8 + 24k}\\{t =  - 8 + 24k}\end{array}\left( {k \in \mathbb{Z}} \right).} \right.} \right.\)

Ứng với hai thời điểm trong ngày ta có \(t = 8\left( {{\rm{\;h}}} \right)\) và \(t = 16\) (h).

Tổng của hai thời điểm là \(8 + 16 = 24\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP