Câu hỏi:

27/10/2025 4 Lưu

Chọn khẳng định sai trong các khẳng định sau.

A. Nếu ba điểm phân biệt \(M,N,P\) cùng thuộc hai mặt phẳng phân biệt thì chúng thẳng hàng.              
B. Hai mặt phẳng phân biệt có một điểm chung thì chúng có một đường thẳng chung duy nhất.              
C. Hai mặt phẳng có một điểm chung thì chúng có vô số điểm chung khác nữa.              
D. Hai mặt phẳng có một điểm chung thì chúng có một đường thẳng chung duy nhất.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn D

Khẳng định ‘‘Hai mặt phẳng có một điểm chung thì chúng có một đường thẳng chung duy nhất’’ là khẳng định sai vì nếu hai mặt phẳng đó trùng nhau thì tính chất này không đúng.

 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a)

Đ

b)

S

c)

Đ

d)

S


(Sai) Có đúng \(2\) mặt phẳng phân biệt chứa điểm \(O\) trong các mặt phẳng được tạo từ \(5\) điểm \(S,A,B,C,D\)
(Vì): Vì các mặt phẳng thỏa mãn yêu cầu chứa điểm \(O\) gồm \((SAC);(SBD);(ABCD)\).
(Đúng) Giao tuyến của hai mặt phẳng \((MBD)\) và \((SAC)\) là đường thẳng \(OM\)
(Vì): Vì ta có \(\left\{ {\begin{array}{*{20}{l}}{M \in (MBD)({\rm{v\`i}}M \in SA)}\end{array}} \right. \Rightarrow M \in (MBD) \cap (SAC)(1)\).
Tương tự \(\left\{ {\begin{array}{*{20}{l}}{O \in (MBD)({\rm{v\`i}}O \in BD)({\rm{v\`i}}O \in AC)}\end{array}} \right. \Rightarrow O \in (MBD) \cap (SAC)(2)\).
Từ \((1)\) và \((2)\) suy ra \(OM = (SAC) \cap (MBD)\).
(Sai) Giao tuyến của hai mặt phẳng \((DMN)\) và \((SAC)\) là đường thẳng \(ME\) với \(E\) là trung điểm của đoạn thẳng \(OC\)
(Vì): Vì ta có \(\left\{ {\begin{array}{*{20}{l}}{M \in (DMN)}\\{M \in (SAC)({\rm{v\`i}}M \in SA)}\end{array}} \right. \Rightarrow M \in (DMN) \cap (SAC)(3)\).
Trong mặt phẳng \((ABCD)\) gọi \(E = DN \cap AC\).
Ta có \(\left\{ {\begin{array}{*{20}{l}}{E \in (DMN)({\rm{v\`i}}E \in DN)}\\{E \in (SAC)({\rm{v\`i}}E \in AC)}\end{array}} \right. \Rightarrow E \in (DMN) \cap (SAC)(4)\).
Từ \((3)\) và \((4)\) suy ra \(ME = (DMN) \cap (SAC)\).
Tam giác \(BCD\) có \(E = DN \cap OC\) và \(DN,OC\) là hai đường trung tuyến.
Suy ra \(E\) là trọng tâm của tam giác \(BCD\).
(Đúng) Giao điểm giữa đường thẳng \(CM\) và mặt phẳng \((SBD)\) là trọng tâm tam giác \(SAC\)
(Vì): Vì trong mặt phẳng \((SAC)\) gọi \(F = CM \cap SO\).
Ta có \(\left\{ {\begin{array}{*{20}{l}}{F \in CM}\\{F \in (SAC)({\rm{v\`i}}F \in SO \subset (SAC))}\end{array}} \right. \Rightarrow F = CM \cap (SAC)\).
Tam giác \(SAC\) có \(F = CM \cap SO\) và \(SO,CM\) là hai đường trung tuyến.
Suy ra \(F\) là trọng tâm của tam giác \(SAC\).

Câu 7

A.  \(\sin 2a = 2\sin a\cos a\).                        
B. \(\sin 2a = 2\sin a\).              
C. \(\sin 2a = \sin a + \cos a\).                      
D. \(\sin 2a = {\cos ^2}a - {\sin ^2}a\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP