Câu hỏi:

27/10/2025 136 Lưu

Cho dãy số vô hạn \(\left\{ {{u_n}} \right\}\)là cấp số cộng có công sai \(d\), số hạng đầu \({u_1}\). Hãy chọn khẳng định sai?              

A. \({u_n} = {u_1} + (n - 1).d\), \(\forall n \in {\mathbb{N}^*}\).                                                       
B. \({u_n} = {u_{n - 1}} + d\), \(n \ge 2\).              
C. \({S_{12}} = \frac{n}{2}\left( {2{u_1} + 11d} \right)\).                                                                       
D. \({u_5} = \frac{{{u_1} + {u_9}}}{2}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Chọn C

Ta có công thức tổng \(n\)số hạng đầu tiên của cấp số cộng là: \({S_n} = n{u_1} + \frac{{n\left( {n - 1} \right)d}}{2}\)

Suy ra \({S_{12}} = 12{u_1} + \frac{{12.11.d}}{2}\)\( = 6\left( {2{u_1} + 11d} \right)\)\( \ne \frac{n}{2}\left( {2{u_1} + 11d} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \( - 1 \le \cos \left( {\frac{\pi }{4} + \frac{{\pi t}}{{50}}} \right) \le 1 \Leftrightarrow 100 \le 550 + 450\cos \left( {\frac{\pi }{4} + \frac{{\pi t}}{{50}}} \right) \le 1000 \Leftrightarrow 100 \le h \le 1000\)

Suy ra, \(h\) đạt giá trị lớn nhất bằng \(1000\) khi \(\cos \left( {\frac{\pi }{4} + \frac{{\pi t}}{{50}}} \right) = 1 \Leftrightarrow \frac{\pi }{4} + \frac{{\pi t}}{{50}} = k2\pi  \Leftrightarrow t =  - 12,5 + 100k\left( {k \in \mathbb{Z}} \right)\)

Mà \(t \in \left[ {0;120} \right]\) nên \(\left\{ \begin{array}{l}0 \le  - 12,5 + 100k \le 120\\k \in \mathbb{Z}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}0,125 \le k \le 1,325\\k \in \mathbb{Z}\end{array} \right. \Leftrightarrow k = 1\).

Với \(k = 1\) thì \(t = 87,5\).

Vậy thời điểm thực hiện thí nghiệm là \(87,5\) phút.

Lời giải

Cho hình chóp tứ giác SABCD với đáy ABCD có các cạnh đối diện không song song với nhau và M là một điểm trên cạnh SA. Tìm giao điểm của đường thẳng MC và mặt phẳng (SBD) (ảnh 1)

Trong \[\left( {ABCD} \right)\] gọi \[I = AC \cap BD\].

Trong \[\left( {SAC} \right)\] gọi \[K = MC \cap SI\].

Ta có \[K \in SI \subset \left( {SBD} \right)\] và \[K \in MC\] nên \[K = MC \cap \left( {SBD} \right)\].

Câu 3

A.  \(270\).                               

B.  \(100\).                  
C.  \(210\).  
D.  \(39\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP