Một vệ tinh bay quanh Trái Đất theo một quỹ đạo hình Elip (như hình vẽ):

Độ cao \(h\) (tính bằng kilômet) của vệ tinh so với bề mặt Trái Đất được xác định bởi công thức \(h = 550 + 450 \cdot \cos \left( {\frac{\pi }{4} + \frac{{\pi t}}{{50}}} \right)\). Trong đó \(t\) là thời gian tính bằng phút kể từ lúc vệ tinh bay vào quỹ đạo. Người ta cần thực hiện một thí nghiệm khoa học khi vệ tinh cách mặt đất xa nhất trong khoảng 120 phút đầu tiên kể từ lúc vệ tinh bay vào quỹ đạo, hãy tìm thời điểm để có thể thực hiện thí nghiệm đó? (làm tròn kết quả đến hàng phần chục theo đơn vị phút).
Một vệ tinh bay quanh Trái Đất theo một quỹ đạo hình Elip (như hình vẽ):

Độ cao \(h\) (tính bằng kilômet) của vệ tinh so với bề mặt Trái Đất được xác định bởi công thức \(h = 550 + 450 \cdot \cos \left( {\frac{\pi }{4} + \frac{{\pi t}}{{50}}} \right)\). Trong đó \(t\) là thời gian tính bằng phút kể từ lúc vệ tinh bay vào quỹ đạo. Người ta cần thực hiện một thí nghiệm khoa học khi vệ tinh cách mặt đất xa nhất trong khoảng 120 phút đầu tiên kể từ lúc vệ tinh bay vào quỹ đạo, hãy tìm thời điểm để có thể thực hiện thí nghiệm đó? (làm tròn kết quả đến hàng phần chục theo đơn vị phút).
Câu hỏi trong đề: Bộ 19 đề thi Giữa kì 1 Toán 11 có đáp án !!
Quảng cáo
Trả lời:
Ta có \( - 1 \le \cos \left( {\frac{\pi }{4} + \frac{{\pi t}}{{50}}} \right) \le 1 \Leftrightarrow 100 \le 550 + 450\cos \left( {\frac{\pi }{4} + \frac{{\pi t}}{{50}}} \right) \le 1000 \Leftrightarrow 100 \le h \le 1000\)
Suy ra, \(h\) đạt giá trị lớn nhất bằng \(1000\) khi \(\cos \left( {\frac{\pi }{4} + \frac{{\pi t}}{{50}}} \right) = 1 \Leftrightarrow \frac{\pi }{4} + \frac{{\pi t}}{{50}} = k2\pi \Leftrightarrow t = - 12,5 + 100k\left( {k \in \mathbb{Z}} \right)\)
Mà \(t \in \left[ {0;120} \right]\) nên \(\left\{ \begin{array}{l}0 \le - 12,5 + 100k \le 120\\k \in \mathbb{Z}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}0,125 \le k \le 1,325\\k \in \mathbb{Z}\end{array} \right. \Leftrightarrow k = 1\).
Với \(k = 1\) thì \(t = 87,5\).
Vậy thời điểm thực hiện thí nghiệm là \(87,5\) phút.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Trong \[\left( {ABCD} \right)\] gọi \[I = AC \cap BD\].
Trong \[\left( {SAC} \right)\] gọi \[K = MC \cap SI\].
Ta có \[K \in SI \subset \left( {SBD} \right)\] và \[K \in MC\] nên \[K = MC \cap \left( {SBD} \right)\].
Lời giải
|
a) |
Đ |
b) |
S |
c) |
Đ |
d) |
Đ |
(Đúng) \(BB'\parallel \left( {ACC'A'} \right)\)
(Vì): Ta có \(\left\{ {\begin{array}{*{20}{l}}{BB'\parallel AA'}\\{AA' \subset \left( {ACC'A'} \right)}\end{array}} \right. \Rightarrow BB'\parallel \left( {ACC'A'} \right)\).
Vậy mệnh đề \(BB'\parallel \left( {ACC'A'} \right)\) đúng.
(Đúng) \((ABC)\parallel \left( {A'B'C'} \right)\)
(Vì): Ta có \((ABC)\parallel \left( {A'B'C'} \right)\) (do \((ABC)\), \(\left( {A'B'C'} \right)\) là hai mặt phẳng chứa hai đáy của lăng trụ nên song song với nhau).
Vậy mệnh đề \((ABC)\parallel \left( {A'B'C'} \right)\) đúng.
(Sai) \(IG\) cắt \(\left( {BCC'B'} \right)\)
(Vì): Gọi \(M\), \(M'\) lần lượt là trung điểm của \(BC\), \(B'C'\).
Gọi \(N\) là trung điểm của \(CC'\), tam giác \(AMN\) có
\(\frac{{AI}}{{AM}} = \frac{{AG}}{{AN}} = \frac{2}{3}\) (tính chất trọng tâm).
Suy ra \(IG\parallel MN\) mà \(MN \subset \left( {BCC'B'} \right)\) nên \(IG\parallel \left( {BCC'B'} \right)(1)\).
Vậy mệnh đề \(IG\) cắt \(\left( {BCC'B'} \right)\) sai.
(Đúng) \((IKG)\parallel \left( {BCC'B'} \right)\)
(Vì): \(MM'\) là đường trung bình của hình bình hành \(BCC'B'\) nên
\(\left\{ {\begin{array}{*{20}{l}}{MM'\parallel BB'}\\{MM' = BB'}\end{array}} \right. \Rightarrow \left\{ {\begin{array}{*{20}{l}}{MM'\parallel AA'}\\{MM' = AA'}\end{array}} \right. \Rightarrow AMM'A'\) là hình bình hành.
Vì \(I\), \(K\) theo thứ tự là trọng tâm các tam giác \(ABC\), \(A'B'C'\) nên
\(IM = KM' = \frac{1}{3}A'M' = \frac{1}{3}AM\), mà \(IM\parallel KM'\) nên \(IKM'M\) là hình bình hành.
Suy ra \(IK\parallel MM'\), \(MM' \subset \left( {BCC'B'} \right) \Rightarrow IK\parallel \left( {BCC'B'} \right)(2)\).
Từ \((1)\) và \((2)\) suy ra \((IKG)\parallel \left( {BCC'B'} \right)\). Vậy mệnh đề \((IKG)\parallel \left( {BCC'B'} \right)\) đúng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. \(270\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
