Câu hỏi:

27/10/2025 39 Lưu

Anh Nam có một mảnh đất rộng và muốn dành ra một khu đất hình chữ nhật có diện tích 200 m2 để trồng vài loại cây mới. Anh dự kiến rào quanh ba cạnh của khu đất hình chữ nhật này bằng lưới thép, cạnh còn lại sẽ tận dụng bức tường có sẵn. Do điều kiện địa lí, chiều rộng khu đất không vượt quá 15 m, hỏi chiều rộng của khu đất này bằng bao nhiêu để tổng chiều dài lưới thép cần dùng là ngắn nhất ?
Anh Nam có một mảnh đất rộng và muốn dành ra một khu đất hình chữ nhật có diện tích 200 m2 để trồng vài loại cây mới. Anh dự kiến rào quanh ba cạnh của khu đất hình chữ nhật này bằng lưới thép, cạnh còn lại sẽ tận dụng bức tường có sẵn. (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi \(x\,(m)\) là chiều rộng của khu đất hình chữ nhật cần rào.

Anh Nam có một mảnh đất rộng và muốn dành ra một khu đất hình chữ nhật có diện tích 200 m2 để trồng vài loại cây mới. Anh dự kiến rào quanh ba cạnh của khu đất hình chữ nhật này bằng lưới thép, cạnh còn lại sẽ tận dụng bức tường có sẵn. (ảnh 2)

Bảng biến thiên:

Anh Nam có một mảnh đất rộng và muốn dành ra một khu đất hình chữ nhật có diện tích 200 m2 để trồng vài loại cây mới. Anh dự kiến rào quanh ba cạnh của khu đất hình chữ nhật này bằng lưới thép, cạnh còn lại sẽ tận dụng bức tường có sẵn. (ảnh 3)
Dựa vào bảng biến thiên, chiều dài lưới thép ngắn nhất là 40m khi chiều rộng khu đất này là \(x = 10\,(\;m)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Dựa vào hình 2 ta thấy đồ thị hàm số \(y = f(x) = a{x^3} + b{x^2} + cx + d\,\,\left( {a < 0} \right)\) và đường thẳng \(y = 30\) cắt nhau tại 3 điểm phân biệt có hoành độ \(x = 0;x = 50;x = 80.\)

\( \Rightarrow a{x^3} + b{x^2} + cx + d\, = 30 \Leftrightarrow a{x^3} + b{x^2} + cx + d - 30 = 0\)có 3 nghiệm phân biệt \(x = 0;x = 50;x = 80.\)

\( \Rightarrow a{x^3} + b{x^2} + cx + d - 30 = ax\left( {x - 50} \right)\left( {x - 80} \right) = a\left( {{x^3} - 130{x^2} + 4000x} \right)\)

Suy ra \(f\left( x \right) = a\left( {{x^3} - 130{x^2} + 4000x} \right) + 30\) \( \Rightarrow f'\left( x \right) = a\left( {3{x^2} - 260x + 4000} \right)\)

\(f'\left( x \right) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 20\,\,\left( {TM} \right)}\\{x = \frac{{200}}{3}\,\left( {TM} \right)}\end{array}} \right.\).

Theo bài ra độ cao nhỏ nhất bằng 6 hay \(f\left( {20} \right) = 6 \Leftrightarrow a =  - \frac{1}{{1500}}\)

Độ cao lớn nhất mà tàu lượn siêu tốc đạt được là \(f\left( {\frac{{200}}{3}} \right) = \frac{{3230}}{{81}} \approx 39,9.\)

Lời giải

Gọi \(x\) \(\left( {1 \le x \le 20,x \in \mathbb{N}} \right)\) là số máy sử dụng và \(C\left( x \right)\) là hàm tổng chi phí sản xuất tương ứng.

Chi phí lắp đặt các máy là \(80x\)

Chi phí vận hành các máy là \(\frac{{400000}}{{200x}}.5,76\)

Tổng chi phí = Chi phí lắp đặt + Chi phí vận hành \( \Rightarrow C\left( x \right) = 80x + \frac{{11520}}{x}\)

Bài toán trở thành tìm giá trị nhỏ nhất của hàm số \(C\left( x \right)\) với \(x \in \left[ {1;20} \right]\)

Ta có \(C'\left( x \right) = 80 - \frac{{11520}}{{{x^2}}} \Rightarrow C'\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 12\left( {tm} \right)\\x =  - 12\left( {ktm} \right)\end{array} \right.\)

Đồng thời \[\left\{ \begin{array}{l}C\left( 1 \right) = 11600\\C\left( {20} \right) = 2176\\C\left( {12} \right) = 1920\end{array} \right. \Rightarrow \mathop {\max }\limits_{x \in \left[ {1;20} \right]} C\left( x \right) = C\left( {12} \right) = 1920 \Leftrightarrow x = 12\]

Vậy công ty nên sử dụng 12 máy để sản xuất thì tổng chi phí sẽ nhỏ nhất.

Câu 4

Cho hàm số \(y = f(x) = {x^3} + 8{x^2} + 5x + 1.\)

              a) Đạo hàm \(f'(x) = 3{x^2} + 8x + 5.\)

              b) Hai điểm cực trị của đồ thị hàm số nằm cùng phía so với trục \[Oy.\]

              c) \(f(0) < f(x)\)với mọi \(x \in \mathbb{R}.\)

              d) Hàm số đã cho đồng biến trên khoảng \(\left( { - 1; + \infty } \right).\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP