Câu hỏi:

28/10/2025 146 Lưu

Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có bảng biến thiên như hình bên dưới. Tổng số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số \(y = f\left( x \right)\)

Chọn A  \(\mathop {\lim }\limits_ (ảnh 1)

A. \(3.\)                       
B. \(2.\)                       
C. \(5.\)      
D. \(4.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn A

\(\mathop {\lim }\limits_{x \to {1^ + }} f(x) =  - \infty \) suy ra TCĐ: \(x = 1\).

\(\mathop {\lim }\limits_{x \to {5^ - }} f(x) =  - \infty \) suy ra TCĐ: \(x = 5\).

\(\mathop {\lim }\limits_{x \to  + \infty } f(x) = 4 \Rightarrow TCN:y = 4\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Doanh thu tối đa mà hộ kinh doanh có thể thu được là \(320x\) (nghìn đồng).

Lợi nhuận hộ kinh doanh thu được là\(L\left( x \right) = 320x - \left( {{x^3} - 3{x^2} + 80x + 500} \right) =  - {x^3} + 3{x^2} + 240x - 500\).

Ta có \(L'\left( x \right) =  - 3{x^2} + 6x + 240 = 0 \Rightarrow \left[ {\begin{array}{*{20}{c}}{x = 10}\\{x =  - 8.}\end{array}} \right.\)

Bảng biến thiên

Một hộ kinh doanh sản xuất mỗi ngày được \(x\) sản phẩm (ảnh 1)

Vậy lợi nhuận lớn nhất mà hộ kinh doanh có được là 1200 nghìn đồng\( = 1,2\) triệu đồng.

Câu 2

A. \(D\left( {9\,;\, - 6\,;\,2} \right).\)             
B. \(D\left( { - 11\,;\,0\,;\,4} \right).\)              
C. \(D\left( {11\,;\,0\,;\, - 4} \right)\)\(D\left( { - 9\,;\,6\,;\, - 2} \right).\)                                                
D. \(D\left( { - 11\,;\,0\,;\,4} \right)\)\(D\left( {9\,;\, - 6\,;\,2} \right).\)

Lời giải

Chọn B

Chọn B  Gọi \(D\left( {x\,;\,y\,;\, (ảnh 1)

Gọi \(D\left( {x\,;\,y\,;\,z} \right).\)

Ta có: \(\overrightarrow {AD}  = \left( {x + 1\,;\,y - 4\,;\,z - 2} \right)\)

Theo đề: \({S_{ABCD}} = 3.{S_{ABC}} \Leftrightarrow \frac{{\left( {AD + BC} \right).AH}}{2} = 3.\frac{{BC.AH}}{2} \Leftrightarrow AD + BC = 3BC \Leftrightarrow AD = 2BC.\)

Suy ra: \(\overrightarrow {AD}  = 2.\overrightarrow {BC}  \Leftrightarrow \left( {x + 1\,;\,y - 4\,;\,z - 2} \right) = 2.\left( { - 5\,;\, - 2\,;\,1} \right) \Leftrightarrow \left\{ \begin{array}{l}x + 1 =  - 10\\y - 4 =  - 4\\z - 2 = 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x =  - 11\\y = 0\\z = 4\end{array} \right..\)

Vậy \(D\left( { - 11\,;\,0\,;\,4} \right).\)