Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có bảng biến thiên như hình bên dưới. Tổng số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số \(y = f\left( x \right)\) là
Câu hỏi trong đề: Bộ 20 đề thi Giữa kì 1 Toán 12 có đáp án !!
Quảng cáo
Trả lời:
Chọn A
\(\mathop {\lim }\limits_{x \to {1^ + }} f(x) = - \infty \) suy ra TCĐ: \(x = 1\).
\(\mathop {\lim }\limits_{x \to {5^ - }} f(x) = - \infty \) suy ra TCĐ: \(x = 5\).
\(\mathop {\lim }\limits_{x \to + \infty } f(x) = 4 \Rightarrow TCN:y = 4\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Doanh thu tối đa mà hộ kinh doanh có thể thu được là \(320x\) (nghìn đồng).
Lợi nhuận hộ kinh doanh thu được là\(L\left( x \right) = 320x - \left( {{x^3} - 3{x^2} + 80x + 500} \right) = - {x^3} + 3{x^2} + 240x - 500\).
Ta có \(L'\left( x \right) = - 3{x^2} + 6x + 240 = 0 \Rightarrow \left[ {\begin{array}{*{20}{c}}{x = 10}\\{x = - 8.}\end{array}} \right.\)
Bảng biến thiên

Vậy lợi nhuận lớn nhất mà hộ kinh doanh có được là 1200 nghìn đồng\( = 1,2\) triệu đồng.
Lời giải
a. Sai: Đồ thị của hàm số có tiệm cận đứng là \(x = 1\)
\(y = x - \frac{1}{{x + 1}}\)
Tập xác định \(D = \mathbb{R}\backslash \{ - 1\} \)
\(y' = 1 + \frac{1}{{{{\left( {x + 1} \right)}^2}}} > 0,\forall x \in D\): hàm số luôn luôn đồng biến, không có cực đại, cực tiểu
\(\mathop {\lim }\limits_{x \to - 1 \mp } y = \pm \infty :x = - 1\)là tiệm cận đứng
\(\mathop {\lim }\limits_{x \to \pm \infty } y = x:y = x\)là tiệm cận xiên
b. Đúng: Đồ thị hàm số cắt trục \(Oy\) tại \(M\). Phương trình tiếp tuyến của \(\left( C \right)\) tại \(M\) là \(y = 2x - 1\)
\(M\left( {0; - 1} \right),{y'_0} = 2\)
Phương trình tiếp tuyến \(\left( T \right)\) tại \(M:y = 2(x - 0) - 1 \Leftrightarrow y = 2x - 1\)
c. Sai: Tồn tại hai tiếp tuyến của đồ thị vuông góc với nhau
Tiếp tuyến \(\left( {{T_1}} \right)\) của \(\left( C \right)\) tại \(P\left( {{x_1},{y_1}} \right)\) có hệ số góc
\({k_1} = {y'_{{x_1}}} = 1 + \frac{1}{{{{\left( {{x_1} + 1} \right)}^2}}} > 0\)
Tiếp tuyến \(\left( {{T_2}} \right)\) của \(\left( C \right)\) tại \(Q\left( {{x_2},{y_2}} \right)\) có hệ số góc
\({k_2} = y_{{x_2}}^\prime = 1 + \frac{1}{{{{\left( {{x_2} + 1} \right)}^2}}} > 0\)
Do \({y'_{{x_1}}} > 0,{y'_{{x_2}}} > 0\) nên không thể có 2 tiếp tuyến của \(\left( C \right)\) vuông góc nhau
d. Đúng: Để đường thẳng \(y = k\) cắt \(\left( C \right)\) tại hai điểm phân biệt \(A\) và \(B\) sao cho \(OA \bot OB\) khi đó \(k\) là nghiệm của phương trình \({k^2} - k - 1 = 0\)
\(y = x - \frac{1}{{x + 1}} = \frac{{{x^2} + x - 1}}{{x + 1}}\)
Phương trình hoành độ giao điểm của \(\left( C \right)\) và đường thẳng \(y = k\):
\(\frac{{{x^2} + x - 1}}{{x + 1}} = k \Leftrightarrow \left\{ \begin{array}{l}x \ne - 1\\{x^2} - \left( {k - 1} \right)x - \left( {k + 1} \right) = 0\,\,\,\left( * \right)\end{array} \right.\)
Do vị trí của \(\left( C \right)\) trên hệ tọa độ \(Oxy\), có thể kết luận \(\left( * \right)\) luôn có 2 nghiệm phân biệt \({x_A},{x_B} \ne - 1\) và \(\left\{ {\begin{array}{*{20}{l}}{{x_A} + {x_B} = k - 1}\\{{x_A} \cdot {x_B} = - \left( {k + 1} \right)}\end{array};A\left( {{x_A};k} \right),B\left( {{x_B};k} \right)} \right.\)
\(\overrightarrow {OA} = \left( {{x_A},k} \right),\overrightarrow {OB} = \left( {{x_B},k} \right)\)
\(OA \bot OB \Leftrightarrow \overrightarrow {OA} \cdot \overrightarrow {OB} = 0 \Leftrightarrow {x_A}{x_B} + {k^2} = 0 \Leftrightarrow - k - 1 + {k^2} = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{k = \frac{{1 - \sqrt 5 }}{2}}\\{k = \frac{{1 + \sqrt 5 }}{2}}\end{array}} \right.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
