Câu hỏi:

28/10/2025 315 Lưu

PHẦN II. Câu trắc nghiệm đúng sai. Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.

Quãng đường của một vật chuyển động theo thời gian được cho bởi công thức \[s(t) = - {t^3} + 18{t^2}\], trong đó \[t\](giây) là khoảng thời gian tính từ lúc vật bắt đầu chuyển động và \[s\](mét) là quãng đường vật di chuyển được trong thời gian đó.

              a) Quãng đường vật di chuyển được sau thời gian 5 giây kể từ lúc chuyển động là \[300m\].

              b) Vận tốc của vật tại thời điểm \[t = 5\] (giây) là \[105m/s\].

              c) Vận tốc của vật đạt cực đại sau 8 giây kể từ lúc vật bắt đầu chuyển động.

d) Trong khoảng thời gian 10 giây, kể từ lúc bắt đầu chuyển động, vận tốc lớn nhất của vật đạt được là 108 m/s.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có thểQuãng đường vật di chuyển được sau 5 giây là \[s\left( 5 \right) =  - {5^3} + {18.5^2} = 325m\] (a) saiVận tốc của vật tại thời điểm \[t\] là \[v\left( t \right) = s'\left( t \right) =  - 3{t^2} + 36t \Rightarrow v\left( 5 \right) =  - {3.5^2} + 36.5 = 105m/s\]

(b) đúng.Ta có: \[v'\left( t \right) =  - 6t + 36 \Rightarrow v'\left( t \right) = 0 \Leftrightarrow t = 6\]

Bảng xét dấu

 Quãng đường của một vật chuyển động theo thời gian đượ (ảnh 1)

Do đó vật đạt vận tốc cực đại sau 6 giây kể từ lúc bắt đầu chuyển động.  (c) sai.Ta có với \[t \in \left[ {0;10} \right]\], \[v\left( 0 \right) = 0;v\left( 6 \right) = 108;v\left( {10} \right) = 60\].

Do đó trong khoảng thời gian 10 giây kể từ lúc bắt đầu chuyển động, vận tốc lớn nhất của vật đạt được là 108m/s. (d) đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Doanh thu tối đa mà hộ kinh doanh có thể thu được là \(320x\) (nghìn đồng).

Lợi nhuận hộ kinh doanh thu được là\(L\left( x \right) = 320x - \left( {{x^3} - 3{x^2} + 80x + 500} \right) =  - {x^3} + 3{x^2} + 240x - 500\).

Ta có \(L'\left( x \right) =  - 3{x^2} + 6x + 240 = 0 \Rightarrow \left[ {\begin{array}{*{20}{c}}{x = 10}\\{x =  - 8.}\end{array}} \right.\)

Bảng biến thiên

Một hộ kinh doanh sản xuất mỗi ngày được \(x\) sản phẩm (ảnh 1)

Vậy lợi nhuận lớn nhất mà hộ kinh doanh có được là 1200 nghìn đồng\( = 1,2\) triệu đồng.

Lời giải

a. Sai: Đồ thị của hàm số có tiệm cận đứng là \(x = 1\)

\(y = x - \frac{1}{{x + 1}}\)

Tập xác định \(D = \mathbb{R}\backslash \{  - 1\} \)

\(y' = 1 + \frac{1}{{{{\left( {x + 1} \right)}^2}}} > 0,\forall x \in D\): hàm số luôn luôn đồng biến, không có cực đại, cực tiểu

\(\mathop {\lim }\limits_{x \to  - 1 \mp } y =  \pm \infty :x =  - 1\)là tiệm cận đứng

\(\mathop {\lim }\limits_{x \to  \pm \infty } y = x:y = x\)là tiệm cận xiên

b. Đúng: Đồ thị hàm số cắt trục \(Oy\) tại \(M\). Phương trình tiếp tuyến của \(\left( C \right)\) tại \(M\) là \(y = 2x - 1\)

\(M\left( {0; - 1} \right),{y'_0} = 2\)

Phương trình tiếp tuyến \(\left( T \right)\) tại \(M:y = 2(x - 0) - 1 \Leftrightarrow y = 2x - 1\)

c. Sai: Tồn tại hai tiếp tuyến của đồ thị vuông góc với nhau

Tiếp tuyến \(\left( {{T_1}} \right)\) của \(\left( C \right)\) tại \(P\left( {{x_1},{y_1}} \right)\) có hệ số góc

\({k_1} = {y'_{{x_1}}} = 1 + \frac{1}{{{{\left( {{x_1} + 1} \right)}^2}}} > 0\)

Tiếp tuyến \(\left( {{T_2}} \right)\) của \(\left( C \right)\) tại \(Q\left( {{x_2},{y_2}} \right)\) có hệ số góc

\({k_2} = y_{{x_2}}^\prime  = 1 + \frac{1}{{{{\left( {{x_2} + 1} \right)}^2}}} > 0\)

Do \({y'_{{x_1}}} > 0,{y'_{{x_2}}} > 0\) nên không thể có 2 tiếp tuyến của \(\left( C \right)\) vuông góc nhau

d. Đúng: Để đường thẳng \(y = k\) cắt \(\left( C \right)\) tại hai điểm phân biệt \(A\) và \(B\) sao cho \(OA \bot OB\) khi đó \(k\) là nghiệm của phương trình \({k^2} - k - 1 = 0\)

\(y = x - \frac{1}{{x + 1}} = \frac{{{x^2} + x - 1}}{{x + 1}}\)

Phương trình hoành độ giao điểm của \(\left( C \right)\) và đường thẳng \(y = k\):

\(\frac{{{x^2} + x - 1}}{{x + 1}} = k \Leftrightarrow \left\{ \begin{array}{l}x \ne  - 1\\{x^2} - \left( {k - 1} \right)x - \left( {k + 1} \right) = 0\,\,\,\left(  *  \right)\end{array} \right.\)

Do vị trí của \(\left( C \right)\) trên hệ tọa độ \(Oxy\), có thể kết luận \(\left(  *  \right)\) luôn có 2 nghiệm phân biệt \({x_A},{x_B} \ne  - 1\) và \(\left\{ {\begin{array}{*{20}{l}}{{x_A} + {x_B} = k - 1}\\{{x_A} \cdot {x_B} =  - \left( {k + 1} \right)}\end{array};A\left( {{x_A};k} \right),B\left( {{x_B};k} \right)} \right.\)

\(\overrightarrow {OA}  = \left( {{x_A},k} \right),\overrightarrow {OB}  = \left( {{x_B},k} \right)\)

\(OA \bot OB \Leftrightarrow \overrightarrow {OA}  \cdot \overrightarrow {OB}  = 0 \Leftrightarrow {x_A}{x_B} + {k^2} = 0 \Leftrightarrow  - k - 1 + {k^2} = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{k = \frac{{1 - \sqrt 5 }}{2}}\\{k = \frac{{1 + \sqrt 5 }}{2}}\end{array}} \right.\)

Câu 4

A. \(D\left( {9\,;\, - 6\,;\,2} \right).\)             
B. \(D\left( { - 11\,;\,0\,;\,4} \right).\)              
C. \(D\left( {11\,;\,0\,;\, - 4} \right)\)\(D\left( { - 9\,;\,6\,;\, - 2} \right).\)                                                
D. \(D\left( { - 11\,;\,0\,;\,4} \right)\)\(D\left( {9\,;\, - 6\,;\,2} \right).\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP