Trong không gian Oxyz, cho hình hộp OABC.O'A'B'C' có \(A\left( {1;1; - 1} \right),B\left( {0;3;0} \right),\overrightarrow {BC'}  = \left( {2; - 6;6} \right)\)Gọi \(H,K\) lần lượt là trọng tâm của tam giác \(OA'O'\) và \(CB'C'\).

a) Tọa độ véc tơ \(\overrightarrow {HK}  = \left( { - 1;2; - 1} \right)\).                                                        
b) Tọa độ véc to \(\overrightarrow {AB'}  = \left( { - 2;3; - 6} \right)\).
c) Tọa độ điểm \(O'\) là \(\left( {3; - 5;5} \right)\).             
d) Tọa độ điểm \(C'\) là \(\left( {2; - 3;6} \right)\)
                                    
                                                                                                                        Trong không gian Oxyz, cho hình hộp OABC.O'A'B'C' có \(A\left( {1;1; - 1} \right),B\left( {0;3;0} \right),\overrightarrow {BC'} = \left( {2; - 6;6} \right)\)Gọi \(H,K\) lần lượt là trọng tâm của tam giác \(OA'O'\) và \(CB'C'\).

a) Tọa độ véc tơ \(\overrightarrow {HK} = \left( { - 1;2; - 1} \right)\).
b) Tọa độ véc to \(\overrightarrow {AB'} = \left( { - 2;3; - 6} \right)\).
c) Tọa độ điểm \(O'\) là \(\left( {3; - 5;5} \right)\).
d) Tọa độ điểm \(C'\) là \(\left( {2; - 3;6} \right)\)
Câu hỏi trong đề: Bộ 20 đề thi Giữa kì 1 Toán 12 có đáp án !!
Quảng cáo
Trả lời:
 Giải bởi Vietjack
                                        Giải bởi Vietjack
                                    (a) Đúng: Gọi \(C'\left( {x;y;z} \right)\). Ta có \(\overrightarrow {BC'} = \left( {2; - 6;6} \right) \Rightarrow \left\{ {\begin{array}{*{20}{l}}{x - 0 = 2}\\{y - 3 = - 6}\\{z - 0 = 6}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x = 2}\\{y = - 3}\\{z = 6}\end{array}} \right.} \right.\)\( \Rightarrow C\left( {2; - 3;6} \right)\).
(b) Đúng: Gọi \(O'\left( {x;y;z} \right)\). Theo hình vẽ thì \(\overrightarrow {AO'} = \overrightarrow {BC'} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x - 1 = 2}\\{y - 1 = - 6}\\{z + 1 = 6}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x = 3}\\{y = - 5}\\{z = 5}\end{array}} \right.} \right.\)\( \Rightarrow O'\left( {3; - 5;5} \right)\)
(c) Sai: Theo hình vẽ thì \(\overrightarrow {AB'} = \overrightarrow {OC'} = \left( {2; - 3;6} \right)\).
(d) Sai: Ta có \(\overrightarrow {HK} = \overrightarrow {AB} = \left( { - 1;2;1} \right)\).
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có \[P'\left( t \right) = \frac{{ - 8{t^2} - 8t + 6}}{{{{\left( {4{t^2} + 2t + 4} \right)}^2}}} = \frac{{2\left( {2t - 1} \right)\left( { - 2t - 3} \right)}}{{{{\left( {4{t^2} + 2t + 4} \right)}^2}}}\]
\[P'\left( t \right) = 0 \Leftrightarrow \left[ \begin{array}{l}t = - \frac{3}{2}\\t = \frac{1}{2}\end{array} \right.\].
Bảng biến thiên

Ta thấy hàm số đạt cực đại tại \[t = \frac{1}{2}\] và \[P'\left( t \right) < 0,\forall t > \frac{1}{2}\] nên sau \[0,5\left( h \right)\] thì vi khuẩn bắt đầu giảm.
Lời giải
Xét tứ diện \(ABCD\) có \(G\) là trọng tâm thì \(\overrightarrow {GA} + \overrightarrow {GC} + \overrightarrow {GC} + \overrightarrow {GD} = \vec 0\) và \(GA = GB = GC = x\)
Ta có: \( - \overrightarrow {GA} = \overrightarrow {GC} + \overrightarrow {GC} + \overrightarrow {GD} \), bình phương hai vế ta được \(G{A^2} = G{B^2} + G{C^2} + G{D^2} + 2\overrightarrow {GB} \cdot \overrightarrow {GC} + 2\overrightarrow {GB} \cdot \overrightarrow {GD} + 2\overrightarrow {GC} \cdot \overrightarrow {GD} \) \( \Leftrightarrow {x^2} = 3{x^2} + 2{x^2}\cos \alpha + 2{x^2}\cos \alpha + 2{x^2}\cos \alpha \Leftrightarrow - 2{x^2} = 6{x^2} \cdot \cos \alpha \Rightarrow \cos \alpha = \frac{{ - 1}}{3} \Rightarrow \alpha \approx {109^^\circ }\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.




 Nhắn tin Zalo
 Nhắn tin Zalo