Một tay lái mô tô nặng 180 (lb), di chuyển với vận tốc không đổi 30 dặm/giờ, thực hiện một khúc cua trên đường cho bởi đồ thị \(y = 100{e^{0,01x}},\quad - 200 \le x \le 50\)
Có thể chứng minh rằng độ lớn của lực pháp tuyến tác dụng lên tay lái mô tô xấp xỉ
\[F(x) = \frac{{10890{e^{0,1x}}}}{{{{\left( {1 + 100{e^{0,2x}}} \right)}^{3/2}}}}\](đơn vị lb)

Hãy tìm lực pháp tuyến lớn nhất tác dụng lên tay lái trong suốt khúc cua (làm tròn kết quả đến hàng đơn vị)
Một tay lái mô tô nặng 180 (lb), di chuyển với vận tốc không đổi 30 dặm/giờ, thực hiện một khúc cua trên đường cho bởi đồ thị \(y = 100{e^{0,01x}},\quad - 200 \le x \le 50\)
Có thể chứng minh rằng độ lớn của lực pháp tuyến tác dụng lên tay lái mô tô xấp xỉ
\[F(x) = \frac{{10890{e^{0,1x}}}}{{{{\left( {1 + 100{e^{0,2x}}} \right)}^{3/2}}}}\](đơn vị lb)

Hãy tìm lực pháp tuyến lớn nhất tác dụng lên tay lái trong suốt khúc cua (làm tròn kết quả đến hàng đơn vị)
Câu hỏi trong đề: Bộ 20 đề thi Giữa kì 1 Toán 12 có đáp án !!
Quảng cáo
Trả lời:
Đặt \(u = {e^{0,2x}}\left( { \Rightarrow {e^{0,1x}} = {u^{1/2}}} \right)\) khi đó \(F(x) = 10890\frac{{{u^{1/2}}}}{{{{(1 + 100u)}^{3/2}}}}\)
Để tìm cực đại, xét \(G(u) = \frac{{{u^{1/2}}}}{{{{(1 + 100u)}^{3/2}}}},\quad u > 0\)
Tính \(\ln G = \frac{1}{2}\ln u - \frac{3}{2}\ln (1 + 100u) \Rightarrow \left( {\ln G} \right)\prime = \frac{1}{{2u}} - \frac{{150}}{{1 + 100u}}\)
Cho đạo hàm bằng 0: \(\frac{1}{{2u}} = \frac{{150}}{{1 + 100u}} \Rightarrow 1 + 100u = 300u \Rightarrow 200u = 1 \Rightarrow u = 0,005\)
Lập bảng biến thiên cho hàm số \(G(u),u > 0\) ta có được hàm số đạt cực đại tại \(u = 0,005\)
Trả về biến \(x\): \({e^{0,2x}} = 0,005 \Rightarrow 0,2x = \ln (0,005) \approx - 5,298 \Rightarrow x \approx - 26,49.\)
(thuộc miền \([ - 200,50]\)).
Giá trị cực đại
- Lực pháp tuyến đạt cực đại khi \(x \approx - 26.5\).
- Giá trị cực đại là khoảng \[419\](lb).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
(a) Đúng: Gọi \(C'\left( {x;y;z} \right)\). Ta có \(\overrightarrow {BC'} = \left( {2; - 6;6} \right) \Rightarrow \left\{ {\begin{array}{*{20}{l}}{x - 0 = 2}\\{y - 3 = - 6}\\{z - 0 = 6}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x = 2}\\{y = - 3}\\{z = 6}\end{array}} \right.} \right.\)\( \Rightarrow C\left( {2; - 3;6} \right)\).
(b) Đúng: Gọi \(O'\left( {x;y;z} \right)\). Theo hình vẽ thì \(\overrightarrow {AO'} = \overrightarrow {BC'} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x - 1 = 2}\\{y - 1 = - 6}\\{z + 1 = 6}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x = 3}\\{y = - 5}\\{z = 5}\end{array}} \right.} \right.\)\( \Rightarrow O'\left( {3; - 5;5} \right)\)
(c) Sai: Theo hình vẽ thì \(\overrightarrow {AB'} = \overrightarrow {OC'} = \left( {2; - 3;6} \right)\).
(d) Sai: Ta có \(\overrightarrow {HK} = \overrightarrow {AB} = \left( { - 1;2;1} \right)\).
Lời giải
Do máy bay giữ nguyên tốc độ nên vận tốc của máy bay trên quãng đường \[AB\] và \[BC\] là như nhau. Ta có: \[\frac{{AB}}{{10}} = \frac{{BC}}{5} \Leftrightarrow AB = 2BC\].
Và máy bay giữ nguyên hướng bay nên hai vectơ \[\overrightarrow {AB} ;\,\overrightarrow {BC} \] cùng hướng.
Do đó \[\overrightarrow {AB} = 2\overrightarrow {BC} \Leftrightarrow \left\{ \begin{array}{l}140 = 2\left( {x - 940} \right)\\50 = 2\left( {y - 550} \right)\\2 = 2\left( {z - 9} \right)\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 1010\\y = 575\\z = 10\end{array} \right.\]
Vậy \[x\, + \,y\, + z = 1595\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.



