Cho biết bốn đoạn thẳng nối từ một đỉnh của tứ diện đến trọng tâm mặt đối diện luôn cắt nhau tại một điểm gọi là trọng tâm của tứ diện đó. Một phân tử metan \(C{H_4}\) được cấu tạo bởi bốn nguyên tử hydrogen ở các đỉnh của một tứ diện đều và một nguyên tử carbon ở trọng tâm của tứ diện. Góc liên kết là góc tạo bởi liên kết \(H - C - H\) là góc giữa các đường nối nguyên tử carbon với hai trong số các nguyên tử hydrogen. Tính số đo góc liên kết này (làm tròn kết quả đến hàng đơn vị của độ).

                                    
                                                                                                                        Cho biết bốn đoạn thẳng nối từ một đỉnh của tứ diện đến trọng tâm mặt đối diện luôn cắt nhau tại một điểm gọi là trọng tâm của tứ diện đó. Một phân tử metan \(C{H_4}\) được cấu tạo bởi bốn nguyên tử hydrogen ở các đỉnh của một tứ diện đều và một nguyên tử carbon ở trọng tâm của tứ diện. Góc liên kết là góc tạo bởi liên kết \(H - C - H\) là góc giữa các đường nối nguyên tử carbon với hai trong số các nguyên tử hydrogen. Tính số đo góc liên kết này (làm tròn kết quả đến hàng đơn vị của độ).

Câu hỏi trong đề: Bộ 20 đề thi Giữa kì 1 Toán 12 có đáp án !!
Quảng cáo
Trả lời:
 Giải bởi Vietjack
                                        Giải bởi Vietjack
                                    Xét tứ diện \(ABCD\) có \(G\) là trọng tâm thì \(\overrightarrow {GA} + \overrightarrow {GC} + \overrightarrow {GC} + \overrightarrow {GD} = \vec 0\) và \(GA = GB = GC = x\)
Ta có: \( - \overrightarrow {GA} = \overrightarrow {GC} + \overrightarrow {GC} + \overrightarrow {GD} \), bình phương hai vế ta được \(G{A^2} = G{B^2} + G{C^2} + G{D^2} + 2\overrightarrow {GB} \cdot \overrightarrow {GC} + 2\overrightarrow {GB} \cdot \overrightarrow {GD} + 2\overrightarrow {GC} \cdot \overrightarrow {GD} \) \( \Leftrightarrow {x^2} = 3{x^2} + 2{x^2}\cos \alpha + 2{x^2}\cos \alpha + 2{x^2}\cos \alpha \Leftrightarrow - 2{x^2} = 6{x^2} \cdot \cos \alpha \Rightarrow \cos \alpha = \frac{{ - 1}}{3} \Rightarrow \alpha \approx {109^^\circ }\).
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có \[P'\left( t \right) = \frac{{ - 8{t^2} - 8t + 6}}{{{{\left( {4{t^2} + 2t + 4} \right)}^2}}} = \frac{{2\left( {2t - 1} \right)\left( { - 2t - 3} \right)}}{{{{\left( {4{t^2} + 2t + 4} \right)}^2}}}\]
\[P'\left( t \right) = 0 \Leftrightarrow \left[ \begin{array}{l}t = - \frac{3}{2}\\t = \frac{1}{2}\end{array} \right.\].
Bảng biến thiên

Ta thấy hàm số đạt cực đại tại \[t = \frac{1}{2}\] và \[P'\left( t \right) < 0,\forall t > \frac{1}{2}\] nên sau \[0,5\left( h \right)\] thì vi khuẩn bắt đầu giảm.
Lời giải
(a) Đúng: Gọi \(C'\left( {x;y;z} \right)\). Ta có \(\overrightarrow {BC'} = \left( {2; - 6;6} \right) \Rightarrow \left\{ {\begin{array}{*{20}{l}}{x - 0 = 2}\\{y - 3 = - 6}\\{z - 0 = 6}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x = 2}\\{y = - 3}\\{z = 6}\end{array}} \right.} \right.\)\( \Rightarrow C\left( {2; - 3;6} \right)\).
(b) Đúng: Gọi \(O'\left( {x;y;z} \right)\). Theo hình vẽ thì \(\overrightarrow {AO'} = \overrightarrow {BC'} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x - 1 = 2}\\{y - 1 = - 6}\\{z + 1 = 6}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x = 3}\\{y = - 5}\\{z = 5}\end{array}} \right.} \right.\)\( \Rightarrow O'\left( {3; - 5;5} \right)\)
(c) Sai: Theo hình vẽ thì \(\overrightarrow {AB'} = \overrightarrow {OC'} = \left( {2; - 3;6} \right)\).
(d) Sai: Ta có \(\overrightarrow {HK} = \overrightarrow {AB} = \left( { - 1;2;1} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.




 Nhắn tin Zalo
 Nhắn tin Zalo