PHẦN III. Câu trắc nghiệm trả lời ngắn. Thí sinh trả lời từ câu 1 đến câu 6.
Một lực tĩnh điện \(\vec F\) tác động lên điện tích điểm \(M\) trong điện trường đều làm cho \(M\) dịch chuyển theo đường gấp khúc \(MNP\). Biết \(q = {2.10^{ - 12}}\)(C) và vectơ cường độ điện trường có độ lớn \(E = 1,{8.10^5}\;\)(N/C) và \(d = MH = 5\;\)(mm). Biết công \(A\) sinh bởi lực tĩnh điện \(\vec F\) bằng \(a{.10^{ - 9}}(J)\) Tính a.
PHẦN III. Câu trắc nghiệm trả lời ngắn. Thí sinh trả lời từ câu 1 đến câu 6.
Một lực tĩnh điện \(\vec F\) tác động lên điện tích điểm \(M\) trong điện trường đều làm cho \(M\) dịch chuyển theo đường gấp khúc \(MNP\). Biết \(q = {2.10^{ - 12}}\)(C) và vectơ cường độ điện trường có độ lớn \(E = 1,{8.10^5}\;\)(N/C) và \(d = MH = 5\;\)(mm). Biết công \(A\) sinh bởi lực tĩnh điện \(\vec F\) bằng \(a{.10^{ - 9}}(J)\) Tính a.
Câu hỏi trong đề: Bộ 20 đề thi Giữa kì 1 Toán 12 có đáp án !!
Quảng cáo
Trả lời:
Đổi \(5\;\)mm \( = \)\(0,005\)m
Gọi \[K\] là điểm thuộc \[MH\] sao cho \(PK \bot MH\), \[L\] là điểm thuộc \(HN\) sao cho \(PL \bot HN\)
Ta có: \({A_{MNP}} = {A_{MP}} + {A_{PN}} = {F_d}.MP\cos {\alpha _1} + {F_d}.PN\cos {\alpha _2}\)
\( \Leftrightarrow {A_{MNP}} = qE.\frac{{MK}}{{\cos {\alpha _1}}}.\cos {\alpha _1} + qE.\frac{{PL}}{{\cos {\alpha _2}}}.\cos {\alpha _2}\)
\( \Leftrightarrow {A_{MNP}} = qE\left( {MK + PL} \right) = qE\left( {MK + KH} \right) = qE.MH = {2.10^{ - 12}}.1,{8.10^5}.0,005 = 1,{8.10^{ - 9}}\)(J)
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đặt \(\widehat {QPR} = \varphi \left( {rad} \right)\), \(\,\,\varphi \in \left( {0\,;\,\,\frac{\pi }{2}} \right)\).

Ta có \(\Delta PQR\) vuông tại \(Q\) \( \Rightarrow PQ = PR.\cos \varphi = 4\cos \varphi \).
Mà \(\widehat {QOR} = 2\widehat {QPR} = 2\varphi \).
Độ dài cung tròn \(QR = 2.2\varphi = 4\varphi \).
Thời gian anh Tài chèo từ \(P\) đến \(Q\) là: \(\frac{{4\cos \varphi }}{3}\) (giờ).
Thời gian anh Tài chèo từ \(Q\) đến \(R\) là: \(\frac{{4\varphi }}{6} = \frac{{2\varphi }}{3}\) (giờ).
Tổng thời gian anh Tài di chuyển từ \(P\) đến \(R\) là: \(t = \frac{{4\cos \varphi }}{3} + \frac{{2\varphi }}{3}\,\,\left( {0 < \varphi < \frac{\pi }{2}} \right)\).
Xét hàm số \(t\left( \varphi \right) = \frac{{4\cos \varphi }}{3} + \frac{{2\varphi }}{3}\) với \(\,\,\varphi \in \left( {0\,;\,\,\frac{\pi }{2}} \right)\).
\(t'\left( \varphi \right) = \frac{1}{3}\left( { - 4\sin \varphi + 2} \right)\), \(\,\,\varphi \in \left( {0\,;\,\,\frac{\pi }{2}} \right)\).
\(t'\left( \varphi \right) = 0,\,\,\varphi \in \left( {0\,;\,\,\frac{\pi }{2}} \right)\)
\( \Leftrightarrow \sin \varphi = \frac{1}{2},\,\,\varphi \in \left( {0\,;\,\,\frac{\pi }{2}} \right)\)
\( \Leftrightarrow \varphi = \frac{\pi }{6}\).
Bảng biến thiên

Vậy thời gian chậm nhất mà anh Tài di chuyển từ \(P\) đến \(R\)là \(t\left( {\frac{\pi }{6}} \right) = \frac{{2\sqrt 3 }}{3} + \frac{\pi }{9} \approx 1,5\)(giờ) hay 90 phút.
Lời giải

Dựng hệ trục \(Oxyz\) như hình vẽ
Khi đó tọa độ các điểm là \(B\left( {0;\,0;\,0} \right)\), \(C\left( {8;\,0;\,0} \right)\), \(D\left( {8;\,6;\,0} \right)\), \(A\left( {0;\,6;\,0} \right)\), \(G\left( {8;\,0;\,10} \right)\), \(F\left( {0;\,0;\,10} \right)\).
Ta có: \(M\) là trung điểm của \(AF\)\( \Rightarrow M\left( {0;\,3;\,5} \right)\).
Con cá bơi từ điểm \(G\) đến chạm mặt đáy hồ tại điểm \(I\left( {x;\,y;\,0} \right) \in \left( {Oxy} \right)\) với \(0 \le x \le 8\), \(0 \le y \le 6\).
Gọi \(N\) là điểm đối xứng của điểm \(M\) qua \(\left( {Oxy} \right)\) \( \Rightarrow N\left( {0;\,3;\, - 5} \right)\).
Quãng đường di chuyển của con cá là \(G - I - M\)
Ta có: \(IM + IG = IN + IG \ge GN\)\( = \sqrt {{{\left( {0 - 8} \right)}^2} + {{\left( {3 - 0} \right)}^2} + {{\left( { - 5 - 10} \right)}^2}} = \sqrt {298} \).
Để \(IM + IG\) nhỏ nhất thì ba điểm \(I\), \(G\), \(N\) thẳng hàng
Suy ra \(\overrightarrow {IG} \), \(\overrightarrow {NG} \) cùng phương.
\(\overrightarrow {IG} = \left( {8 - x;\, - y;\,10} \right)\).
\(\overrightarrow {NG} = \left( {8;\, - 3;\,15} \right)\).
Do đó \(\frac{{8 - x}}{8} = \frac{{ - y}}{{ - 3}} = \frac{{10}}{{15}}\).
Suy ra \(x = \frac{8}{3}\), \(y = 2\)\( \Rightarrow I\left( {\frac{8}{3};\,2;\,0} \right)\).
Khi đó, \(a = d\left( {I,BA} \right) = \frac{8}{3}\), \(b = d\left( {I,BC} \right) = 2\).
Vậy \(D = 3a + 6b = 3 \cdot \frac{8}{3} + 6 \cdot 2 = 20\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.





