Câu hỏi:

28/10/2025 54 Lưu

Trong một thí nghiệm y học, người ta cấy 1000 vi khuẩn vào môi trường dinh dưỡng. Bằng thực nghiệm, người ta xác định được số lượng vi khuẩn thay đổi theo thời gian bởi công thức: \(N(t) = 1000 + \frac{{100t}}{{100 + {t^2}}}({\rm{con}}),\)trong đó \(t\) là thời gian tính bằng giây. Tính số lượng vi khuẩn lớn nhất kể từ khi thực hiện cấy vi khuẩn vào môi trường dinh dưỡng.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Xét hàm số \(N(t) = 1000 + \frac{{100t}}{{100 + {t^2}}}(t > 0)\).

Ta có: \({N^\prime }(t) = \frac{{100 \cdot \left( {100 + {t^2}} \right) - 100t \cdot 2t}}{{{{\left( {100 + {t^2}} \right)}^2}}} = \frac{{100 \cdot \left( {100 - {t^2}} \right)}}{{{{\left( {100 + {t^2}} \right)}^2}}}\).

Khi đó, với \(t > 0,{N^\prime }(t) = 0 \Leftrightarrow 100 - {t^2} = 0 \Leftrightarrow {t^2} = 100 \Leftrightarrow t = 10\).

Bảng biến thiên của hàm số \(N(t)\) như sau:

Trong một thí nghiệm y học, người ta cấy 1000 vi (ảnh 1)

Căn cứ bảng biến thiên, ta thấy: Trên khoảng \((0; + \infty )\), hàm số \(N(t)\) đạt giá trị lớn nhất bằng 1005 tại \(t = 10\)

Vậy số lượng vi khuẩn lớn nhất kể từ khi thực hiện cấy vi khuẩn vào môi trường dinh dưỡng là 1005 con.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đặt \(\widehat {QPR} = \varphi \left( {rad} \right)\), \(\,\,\varphi  \in \left( {0\,;\,\,\frac{\pi }{2}} \right)\).

Cho một bờ hồ hình bán nguyệt có bán k (ảnh 2)

Ta có \(\Delta PQR\) vuông tại \(Q\) \( \Rightarrow PQ = PR.\cos \varphi  = 4\cos \varphi \).

Mà \(\widehat {QOR} = 2\widehat {QPR} = 2\varphi \).

Độ dài cung tròn \(QR = 2.2\varphi  = 4\varphi \).

Thời gian anh Tài chèo từ \(P\) đến \(Q\) là: \(\frac{{4\cos \varphi }}{3}\) (giờ).

Thời gian anh Tài chèo từ \(Q\) đến \(R\) là: \(\frac{{4\varphi }}{6} = \frac{{2\varphi }}{3}\) (giờ).

Tổng thời gian anh Tài di chuyển từ \(P\) đến \(R\) là: \(t = \frac{{4\cos \varphi }}{3} + \frac{{2\varphi }}{3}\,\,\left( {0 < \varphi  < \frac{\pi }{2}} \right)\).

Xét hàm số \(t\left( \varphi  \right) = \frac{{4\cos \varphi }}{3} + \frac{{2\varphi }}{3}\) với \(\,\,\varphi  \in \left( {0\,;\,\,\frac{\pi }{2}} \right)\).

\(t'\left( \varphi  \right) = \frac{1}{3}\left( { - 4\sin \varphi  + 2} \right)\), \(\,\,\varphi  \in \left( {0\,;\,\,\frac{\pi }{2}} \right)\).

\(t'\left( \varphi  \right) = 0,\,\,\varphi  \in \left( {0\,;\,\,\frac{\pi }{2}} \right)\)

\( \Leftrightarrow \sin \varphi  = \frac{1}{2},\,\,\varphi  \in \left( {0\,;\,\,\frac{\pi }{2}} \right)\)

\( \Leftrightarrow \varphi  = \frac{\pi }{6}\).

Bảng biến thiên

Cho một bờ hồ hình bán nguyệt có bán k (ảnh 3)

Vậy thời gian chậm nhất mà anh Tài di chuyển từ \(P\) đến \(R\)là \(t\left( {\frac{\pi }{6}} \right) = \frac{{2\sqrt 3 }}{3} + \frac{\pi }{9} \approx 1,5\)(giờ) hay 90 phút.

Lời giải

Một bể cá đầy nước có dạng hình hộp chữ nhật ABCD.EFGH vớ (ảnh 2)

Dựng hệ trục \(Oxyz\) như hình vẽ

Khi đó tọa độ các điểm là \(B\left( {0;\,0;\,0} \right)\), \(C\left( {8;\,0;\,0} \right)\), \(D\left( {8;\,6;\,0} \right)\), \(A\left( {0;\,6;\,0} \right)\), \(G\left( {8;\,0;\,10} \right)\), \(F\left( {0;\,0;\,10} \right)\).

Ta có: \(M\) là trung điểm của \(AF\)\( \Rightarrow M\left( {0;\,3;\,5} \right)\).

Con cá bơi từ điểm \(G\) đến chạm mặt đáy hồ tại điểm \(I\left( {x;\,y;\,0} \right) \in \left( {Oxy} \right)\) với \(0 \le x \le 8\), \(0 \le y \le 6\).

Gọi \(N\) là điểm đối xứng của điểm \(M\) qua \(\left( {Oxy} \right)\) \( \Rightarrow N\left( {0;\,3;\, - 5} \right)\).

Quãng đường di chuyển của con cá là \(G - I - M\)

Ta có: \(IM + IG = IN + IG \ge GN\)\( = \sqrt {{{\left( {0 - 8} \right)}^2} + {{\left( {3 - 0} \right)}^2} + {{\left( { - 5 - 10} \right)}^2}}  = \sqrt {298} \).

Để \(IM + IG\) nhỏ nhất thì ba điểm \(I\), \(G\), \(N\) thẳng hàng

Suy ra \(\overrightarrow {IG} \), \(\overrightarrow {NG} \) cùng phương.

\(\overrightarrow {IG}  = \left( {8 - x;\, - y;\,10} \right)\).

\(\overrightarrow {NG}  = \left( {8;\, - 3;\,15} \right)\).

Do đó \(\frac{{8 - x}}{8} = \frac{{ - y}}{{ - 3}} = \frac{{10}}{{15}}\).

Suy ra \(x = \frac{8}{3}\), \(y = 2\)\( \Rightarrow I\left( {\frac{8}{3};\,2;\,0} \right)\).

Khi đó, \(a = d\left( {I,BA} \right) = \frac{8}{3}\), \(b = d\left( {I,BC} \right) = 2\).

Vậy \(D = 3a + 6b = 3 \cdot \frac{8}{3} + 6 \cdot 2 = 20\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP