Câu hỏi:

28/10/2025 92 Lưu

Cho hàm số \(y = f\left( x \right)\)xác định trên \(\mathbb{R}\backslash \left\{ { - 1} \right\}\), liên tục trên mỗi khoảng xác định và có bảng biến thiên
Chọn C  \(y' = 8{x^3} - 8x\,\,;y' = (ảnh 1)
Hỏi khẳng định nào dưới đây là khẳng định sai?              

A. Hàm số đã cho không có đạo hàm tại điểm \(x = - 1\).             
B. Đồ thị hàm số có hai tiệm cận ngang là các đường thẳng \(y = - 1\)\(y = 1\).              
C. Hàm số đã cho đạt cực đại tại điểm \(x = 1\).              
D. Đồ thị hàm số đã cho không có tiệm cận đứng.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Chọn D
Chọn C  \(y' = 8{x^3} - 8x\,\,;y' = (ảnh 2)

Dựa vào bảng biến thiên của hàm số ta có:

Hàm số đã cho không có đạo hàm tại điểm \(x =  - 1\).

Hàm số đã cho đạt cực đại tại điểm \(x = 1\).

\(\mathop {\lim }\limits_{x \to  - \infty } y = 1\), \(\mathop {\lim }\limits_{x \to  + \infty } y =  - 1\)nên đồ thị hàm số có hai tiệm cận ngang là các đường thẳng \(y =  - 1\)và \(y = 1\).

\(\mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ + }} y =  - \infty \)nên đồ thị hàm số có tiệm cận đứng là đường thẳng \(x =  - 1\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho một tấm bìa hình vuông có cạnh \[2m\]. Từ t (ảnh 2)      Cho một tấm bìa hình vuông có cạnh \[2m\]. Từ t (ảnh 3)

Gọi độ dài cạnh đáy của hình chóp là \(x\left( m \right)\). Do \(MN < IJ = \sqrt 2  \Rightarrow x \in \left( {0;\sqrt 2 } \right)\).

Ta có: \(OK = \frac{x}{2};OA = \frac{{AC}}{2} = \sqrt 2  \Rightarrow SK = AK = \sqrt 2  - \frac{x}{2}\).

Do vậy: \(SO = \sqrt {S{K^2} - O{K^2}}  = \sqrt {{{\left( {\sqrt 2  - \frac{x}{2}} \right)}^2} - \frac{{{x^2}}}{4}}  = \sqrt {2 - \sqrt 2 x} \).

Khi đó thể tích khối chóp là: \(V = \frac{1}{3}{x^2}\sqrt {2 - \sqrt 2 x} \).

Xét \(f\left( x \right) = \frac{1}{3}{x^2}\sqrt {2 - \sqrt 2 x} ,\,\left( {x \in \left( {0;\sqrt 2 } \right)} \right)\), ta có:

\(f'\left( x \right) = \frac{1}{3}\left( {2x\sqrt {2 - \sqrt 2 x}  - {x^2}\frac{{\sqrt 2 }}{{2\sqrt {2 - \sqrt 2 x} }}} \right) = \frac{1}{3}\left( {\frac{{4x\left( {2 - \sqrt 2 x} \right) - \sqrt 2 {x^2}}}{{2\sqrt {2 - \sqrt 2 x} }}} \right) = \frac{{8x - 5\sqrt 2 {x^2}}}{{3\left( {2\sqrt {2 - \sqrt 2 x} } \right)}}\)

\(f'\left( x \right) = 0 \Leftrightarrow 8x - 5\sqrt 2 {x^2} = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = \frac{{4\sqrt 2 }}{5}\end{array} \right.\)

Ta có bảng biến thiên:

Cho một tấm bìa hình vuông có cạnh \[2m\]. Từ t (ảnh 4)

Ta thấy thể tích của mô hình lớn nhất khi cạnh đáy của mô hình là\(x = \frac{{4\sqrt 2 }}{5}\, \Rightarrow a = 4,b = 5 \Rightarrow {a^2} + {b^2} = 41\).

Lời giải

Sau \(t\) phút, trong bể chứa \(\left( {50t + 150} \right)\)lít nước và \(20t\)gam chất khử trùng.

Suy ra nồng độ chất khử trùng trong bể sau \(t\) phút là \(f\left( t \right) = \frac{{20t}}{{50t + 150}}\)gam/lít.

Khảo sát sự biến thiên hàm số \(f\left( t \right) = \frac{{20t}}{{50t + 150}}\), \(t \ge 0\).

Ta có: \(f'\left( t \right) = \frac{{3000}}{{{{\left( {50t + 150} \right)}^2}}} > 0,\forall t \ge 0\)

\(\mathop {\lim }\limits_{t \to  + \infty } f\left( t \right) = \mathop {\lim }\limits_{t \to  + \infty } \frac{{20t}}{{50t + 150}} = \mathop {\lim }\limits_{t \to  + \infty } \frac{{20}}{{50 + \frac{{150}}{t}}} = \frac{2}{5} = 0,4\)

Bảng biến thiên

Một bể ban đầu chứa \(150\) lít nước. Sau đó, cứ (ảnh 2)

Dựa vào BBT ta thấy giá trị \(f\left( t \right)\) tăng theo \(t\) nhưng không vượt ngưỡng \(0,4\)gam/lít.

Vậy \(p = 0,4\).

Câu 4

A. \[4\].                     
B. \[3\].                     
C. \[1\].     
D. \[2\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP