Cho hàm số \(f\left( x \right)\) có đạo hàm \(f'\left( x \right) = x{\left( {x + 3} \right)^3}{\left( {x - 1} \right)^2}\). Số điểm cực trị của hàm số đã cho là 
                                    
                                                                                                                        Câu hỏi trong đề: Bộ 20 đề thi Giữa kì 1 Toán 12 có đáp án !!
Quảng cáo
Trả lời:
 Giải bởi Vietjack
                                        Giải bởi Vietjack
                                    Ta có \(f'\left( x \right) = 0 \Leftrightarrow f'\left( x \right) = x{\left( {x + 3} \right)^3}{\left( {x - 1} \right)^2} = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\{\left( {x + 3} \right)^3} = 0\\{\left( {x - 1} \right)^2} = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = - 3\\x = 1\end{array} \right..\)
Bảng biến thiên:

Dựa vào bảng biến thiên, ta thấy \(f'\left( x \right)\) đổi dấu từ âm sang dương khi qua nghiệm \(x = - 3\) và \(f'\left( x \right)\)đổi dấu từ dương sang âm khi qua nghiệm \(x = 0\), nên hàm số đã cho có 2 điểm cực trị.
*Phương án nhiễu A, học sinh không nhớ được các định lí về điểm cực đại và điểm cực tiểu (điểm cực trị) nên chọn bừa là hàm số có \(0\) điểm cực trị, hoặc học sinh không biết tìm ra các nghiệm của phương trình\(f'\left( x \right) = 0\) nên chọn bừa.
*Phương án nhiễu B, học sinh nhìn vào bảng xét dấu có \(1\) dấu nên suy ra hàm số có \(1\) điểm cực trị.
*Phương án nhiễu D, học sinh nhìn nhầm \(f'\left( x \right) = 0\) tại \(3\) nghiệm nên suy ra hàm số có \(3\) điểm cực trị.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Sau \(t\) phút, trong bể chứa \(\left( {50t + 150} \right)\)lít nước và \(20t\)gam chất khử trùng.
Suy ra nồng độ chất khử trùng trong bể sau \(t\) phút là \(f\left( t \right) = \frac{{20t}}{{50t + 150}}\)gam/lít.
Khảo sát sự biến thiên hàm số \(f\left( t \right) = \frac{{20t}}{{50t + 150}}\), \(t \ge 0\).
Ta có: \(f'\left( t \right) = \frac{{3000}}{{{{\left( {50t + 150} \right)}^2}}} > 0,\forall t \ge 0\)
\(\mathop {\lim }\limits_{t \to + \infty } f\left( t \right) = \mathop {\lim }\limits_{t \to + \infty } \frac{{20t}}{{50t + 150}} = \mathop {\lim }\limits_{t \to + \infty } \frac{{20}}{{50 + \frac{{150}}{t}}} = \frac{2}{5} = 0,4\)
Bảng biến thiên

Dựa vào BBT ta thấy giá trị \(f\left( t \right)\) tăng theo \(t\) nhưng không vượt ngưỡng \(0,4\)gam/lít.
Vậy \(p = 0,4\).
Lời giải
| a) | S | b) | Đ | c) | Đ | d) | S | 
Từ BBT, ta thấy hàm số \(y = f(x)\) không xác định tại \(x = 2\) nên \(D = \mathbb{R}\backslash {\rm{\{ }}2\} \).Từ BBT, ta thấy hàm số \(y = f(x)\) chỉ đạt cực tiểu tại \(x = 1\) và \({y_{CT}} = 0\), nên hàm số chỉ có một điểm cực trị.Từ BBT, ta thấy giá trị nhỏ nhất của hàm số bằng 0 đạt tại \(x = 1\).Từ BBT, ta có \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = 4;\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = 3;\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = + \infty \) nên đồ thị hàm số có hai đường tiệm cận ngang là \(y = 3;y = 4\) và một đường tiệm cận đứng là \(x = 2\).
Vậy đồ thị hàm số có 3 đường tiệm cận.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


![Cho một tấm bìa hình vuông có cạnh \[2m\]. Từ t (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/10/17-1761639676.png)
 Nhắn tin Zalo
 Nhắn tin Zalo