Cho hình lăng trụ \[ABC.A'B'C'\]. \[M\] là trung điểm của \[BB'\]. Đặt \[\overrightarrow {CA} = \overrightarrow a ,\overrightarrow {CB} = \overrightarrow b ,\overrightarrow {AA'} = \overrightarrow {c.} \] Khi đó
Câu hỏi trong đề: Bộ 20 đề thi Giữa kì 1 Toán 12 có đáp án !!
Quảng cáo
Trả lời:

Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
![Cho một tấm bìa hình vuông có cạnh \[2m\]. Từ t (ảnh 3)](https://video.vietjack.com/upload2/quiz_source1/2025/10/19-1761639716.png)
Gọi độ dài cạnh đáy của hình chóp là \(x\left( m \right)\). Do \(MN < IJ = \sqrt 2 \Rightarrow x \in \left( {0;\sqrt 2 } \right)\).
Ta có: \(OK = \frac{x}{2};OA = \frac{{AC}}{2} = \sqrt 2 \Rightarrow SK = AK = \sqrt 2 - \frac{x}{2}\).
Do vậy: \(SO = \sqrt {S{K^2} - O{K^2}} = \sqrt {{{\left( {\sqrt 2 - \frac{x}{2}} \right)}^2} - \frac{{{x^2}}}{4}} = \sqrt {2 - \sqrt 2 x} \).
Khi đó thể tích khối chóp là: \(V = \frac{1}{3}{x^2}\sqrt {2 - \sqrt 2 x} \).
Xét \(f\left( x \right) = \frac{1}{3}{x^2}\sqrt {2 - \sqrt 2 x} ,\,\left( {x \in \left( {0;\sqrt 2 } \right)} \right)\), ta có:
\(f'\left( x \right) = \frac{1}{3}\left( {2x\sqrt {2 - \sqrt 2 x} - {x^2}\frac{{\sqrt 2 }}{{2\sqrt {2 - \sqrt 2 x} }}} \right) = \frac{1}{3}\left( {\frac{{4x\left( {2 - \sqrt 2 x} \right) - \sqrt 2 {x^2}}}{{2\sqrt {2 - \sqrt 2 x} }}} \right) = \frac{{8x - 5\sqrt 2 {x^2}}}{{3\left( {2\sqrt {2 - \sqrt 2 x} } \right)}}\)
\(f'\left( x \right) = 0 \Leftrightarrow 8x - 5\sqrt 2 {x^2} = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = \frac{{4\sqrt 2 }}{5}\end{array} \right.\)
Ta có bảng biến thiên:
![Cho một tấm bìa hình vuông có cạnh \[2m\]. Từ t (ảnh 4)](https://video.vietjack.com/upload2/quiz_source1/2025/10/20-1761639727.png)
Lời giải
Sau \(t\) phút, trong bể chứa \(\left( {50t + 150} \right)\)lít nước và \(20t\)gam chất khử trùng.
Suy ra nồng độ chất khử trùng trong bể sau \(t\) phút là \(f\left( t \right) = \frac{{20t}}{{50t + 150}}\)gam/lít.
Khảo sát sự biến thiên hàm số \(f\left( t \right) = \frac{{20t}}{{50t + 150}}\), \(t \ge 0\).
Ta có: \(f'\left( t \right) = \frac{{3000}}{{{{\left( {50t + 150} \right)}^2}}} > 0,\forall t \ge 0\)
\(\mathop {\lim }\limits_{t \to + \infty } f\left( t \right) = \mathop {\lim }\limits_{t \to + \infty } \frac{{20t}}{{50t + 150}} = \mathop {\lim }\limits_{t \to + \infty } \frac{{20}}{{50 + \frac{{150}}{t}}} = \frac{2}{5} = 0,4\)
Bảng biến thiên

Dựa vào BBT ta thấy giá trị \(f\left( t \right)\) tăng theo \(t\) nhưng không vượt ngưỡng \(0,4\)gam/lít.
Vậy \(p = 0,4\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
![Cho một tấm bìa hình vuông có cạnh \[2m\]. Từ t (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/10/17-1761639676.png)



