Câu hỏi:

28/10/2025 28 Lưu

Bảng biến thiên sau đây là của hàm số nào?

Bảng biến thiên sau đây là của hàm số nào? (ảnh 1)

A. \[y = \frac{{2x + 1}}{{x + 1}}\].                              

B. \[y = \frac{{x + 2}}{{1 + x}}\].         
C. \[y = \frac{{2x + 1}}{{x - 1}}\].      
D. \[y = \frac{{2x + 3}}{{x + 1}}\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Chọn B

Dựa vào bảng biến thiên ta có:

Hàm số luôn đồng biến trên từng khoảng xác định và có 2 đường tiệm cận đứng và ngang lần lượt là \(x =  - 1\) và \(y = 2\).

\[y = \frac{{2x + 3}}{{x + 1}}\]\( \Rightarrow y' = \frac{{ - 1}}{{{{\left( {x + 1} \right)}^2}}}\) \( < 0\), \(\forall x \in \mathbb{R}\backslash \left\{ { - 1} \right\}\) \( \Rightarrow \) Loại đáp án A.

\[y = \frac{{2x + 1}}{{x + 1}}\]\( \Rightarrow y' = \frac{1}{{{{\left( {x + 1} \right)}^2}}}\)\( > 0\), \(\forall x \in \mathbb{R}\backslash \left\{ { - 1} \right\}\) \( \Rightarrow \) 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Tốc độ tăng trưởng của virut được tính theo hàm số \(y = p'\left( t \right) = \frac{{1120.{{\rm{e}}^{0,2t}}}}{{{{\left( {{{\rm{e}}^{0,2t}} + 7} \right)}^2}}}\), \(t \ge 0\).

Xét hàm số \(y = g\left( t \right) = \frac{{1120.{{\rm{e}}^{0,2t}}}}{{{{\left( {{{\rm{e}}^{0,2t}} + 7} \right)}^2}}}\), có \(g'\left( t \right) = \frac{{224.{{\rm{e}}^{0,2t}}\left( {7 - {{\rm{e}}^{0,2t}}} \right)}}{{{{\left( {{{\rm{e}}^{0,2t}} + 7} \right)}^3}}}\).

\(g'\left( t \right) = 0 \Leftrightarrow 7 - {e^{0,2t}} = 0 \Leftrightarrow t = 5\ln 7 \approx 9,7\).

Ta có bảng dấu của \(g'\left( t \right)\) như sau:

Sự tăng trưởng của một loại virut được xá (ảnh 1)

Dựa vào bảng trên ta thấy tốc độ tăng trưởng của virut sẽ đạt lớn nhất ở ngày thứ 10.

Lời giải

Dựa vào đề bài ta có hệ phương trình: \(\left\{ \begin{array}{l}f\left( 1 \right) = 19\\f'\left( 3 \right) = 0\\f\left( 3 \right) = 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a + b + c = 28\\6a + b =  - 27\\9a + 3b + c =  - 24\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a =  - 3\\b =  - 9\\c = 30\end{array} \right.\).

\( \Rightarrow f\left( x \right) = {x^3} - 3{x^2} - 9x + 30 \Rightarrow f\left( 6 \right) = 84\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(C\left( {3;2;3} \right)\).                         
B. \(C\left( {4;2;4} \right)\).         
C. \(C\left( {2;2;2} \right)\).                                    
D. \(C\left( {1;2;1} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \[\mathop {\min }\limits_{\left( { - 3;5} \right]} f\left( x \right) = - 3\].             
B. \[\mathop {\max }\limits_{\left( { - 3;5} \right]} f\left( x \right) = 2\]. 
C. \[\mathop {\max }\limits_{\left( { - 3;5} \right]} f\left( x \right) = 7\].                            
D. \[\mathop {\min }\limits_{\left( { - 3;5} \right]} f\left( x \right) = - 5\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP