Câu hỏi:

28/10/2025 18 Lưu

PHẦN III. Câu trắc nghiệm trả lời ngắn. Thí sinh trả lời từ câu 1 đến câu 6.

Một em nhỏ cân nặng \(m = 25\;\)kg trượt trên cầu trượt dài \(3,5\;\)m. Biết rằng, cầu trượt có góc nghiêng so với phương nằm ngang là \(30^\circ \)

Độ lớn của trọng lực là \(\vec P = (ảnh 1)
Độ lớn của trọng lực là \(\vec P = m.\vec g\) tác dụng lên em nhỏ, cho biết vectơ gia tốc rơi tự do \(\vec g\) có độ lớn là \(g = 9,8\;{\rm{m/}}{{\rm{s}}^2}\). Cho biết công \(A\left( J \right)\) sinh bởi một lực \(\vec F\) có độ dịch chuyển \(\vec d\) được tính bởi công thức \(A = \vec F.\vec d\). Hãy tính công sinh bởi trọng lực \(\vec P\) khi em nhỏ trượt hết chiều dài cầu trượt. (Làm tròn đến hàng đơn vị)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Độ lớn trọng lực tác dụng lên em nhỏ là: \(P = mg\cos 60^\circ  = 25.9,8 \cdot \frac{1}{2} = 122,5\)N

Công sinh bởi trọng lực \(\vec P\) khi em nhỏ trượt hết chiều dài cầu trượt là:

\(A = \vec F.\vec d = Pd\cos 60^\circ  = 122,5.3,5.\frac{1}{2} = 214,375\)(J)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Tốc độ tăng trưởng của virut được tính theo hàm số \(y = p'\left( t \right) = \frac{{1120.{{\rm{e}}^{0,2t}}}}{{{{\left( {{{\rm{e}}^{0,2t}} + 7} \right)}^2}}}\), \(t \ge 0\).

Xét hàm số \(y = g\left( t \right) = \frac{{1120.{{\rm{e}}^{0,2t}}}}{{{{\left( {{{\rm{e}}^{0,2t}} + 7} \right)}^2}}}\), có \(g'\left( t \right) = \frac{{224.{{\rm{e}}^{0,2t}}\left( {7 - {{\rm{e}}^{0,2t}}} \right)}}{{{{\left( {{{\rm{e}}^{0,2t}} + 7} \right)}^3}}}\).

\(g'\left( t \right) = 0 \Leftrightarrow 7 - {e^{0,2t}} = 0 \Leftrightarrow t = 5\ln 7 \approx 9,7\).

Ta có bảng dấu của \(g'\left( t \right)\) như sau:

Sự tăng trưởng của một loại virut được xá (ảnh 1)

Dựa vào bảng trên ta thấy tốc độ tăng trưởng của virut sẽ đạt lớn nhất ở ngày thứ 10.

Lời giải

a)

Đ

b)

Đ

c)

S

d)

Đ

 

Ta có \(y = \frac{{ - {x^2} + x + 1}}{{x + 1}} =  - x + 2 - \frac{1}{{x + 1}}\) có đạo hàm \(y' = \frac{{ - x - 2x}}{{{{\left( {x + 1} \right)}^2}}} = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 0}\\{x =  - 2}\end{array}} \right.\)

Khi đó ta có bảng biến thiên:

Cho hàm số \(y = \frac{{ - {x^2 (ảnh 1)

(a) Đúng: Hàm số đồng biến trên mỗi khoảng khoảng \(\left( { - 2, - 1} \right)\) và \(\left( { - 1,0} \right)\)

(b) Đúng: Hàm số có hai điểm cực trị.

(c) Sai: Mặt khác \(y = 0 \Leftrightarrow  - {x^2} + x + 1 = 0\,\,\,\left( * \right)\)

Vậy phương trình \((*)\) luôn có hai nghiệm phân biệt. Hay \((C)\) luôn cắt \(Ox\) tại hai điểm phân biệt.

(d) Đúng: Tiệm cận xiên của đồ thị là \(y =  - x + 2\) nên đi qua điểm \(A\left( {1;2} \right)\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \[\mathop {\min }\limits_{\left( { - 3;5} \right]} f\left( x \right) = - 3\].             
B. \[\mathop {\max }\limits_{\left( { - 3;5} \right]} f\left( x \right) = 2\]. 
C. \[\mathop {\max }\limits_{\left( { - 3;5} \right]} f\left( x \right) = 7\].                            
D. \[\mathop {\min }\limits_{\left( { - 3;5} \right]} f\left( x \right) = - 5\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP