Một chiếc xe đang kéo căng sợi dây cáp \(AB\) trong công trường xây dựng, trên đó đã thiết lập hệ toạ độ \(Oxyz\) như hình vẽ dưới với độ dài đơn vị trên các trục tọa độ bằng \(1\;m\). Tìm được tọa độ của vectơ \(\overrightarrow {AB} = \left( {a;b;c} \right)\). Khi đó tính \(a + c\)

Quảng cáo
Trả lời:
Ta có: \(\overrightarrow {OA} = 10\vec k \Rightarrow A\left( {0;0;10} \right)\) và \(OH = OB.\cos 30^\circ = \frac{{15\sqrt 3 }}{2}\); \(OK = OB.\cos \left( {90^\circ - 30^\circ } \right) = \frac{{15}}{2}\)
\[ \Rightarrow {\rm{ }}B\left( {\frac{{15}}{2};\frac{{15\sqrt 3 }}{2};0} \right) \Rightarrow \overrightarrow {AB} = \left( {\frac{{15}}{2};\frac{{15\sqrt 3 }}{2}; - 10} \right)\]. Vậy \(a + c = 2,5\)
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Tốc độ tăng trưởng của virut được tính theo hàm số \(y = p'\left( t \right) = \frac{{1120.{{\rm{e}}^{0,2t}}}}{{{{\left( {{{\rm{e}}^{0,2t}} + 7} \right)}^2}}}\), \(t \ge 0\).
Xét hàm số \(y = g\left( t \right) = \frac{{1120.{{\rm{e}}^{0,2t}}}}{{{{\left( {{{\rm{e}}^{0,2t}} + 7} \right)}^2}}}\), có \(g'\left( t \right) = \frac{{224.{{\rm{e}}^{0,2t}}\left( {7 - {{\rm{e}}^{0,2t}}} \right)}}{{{{\left( {{{\rm{e}}^{0,2t}} + 7} \right)}^3}}}\).
\(g'\left( t \right) = 0 \Leftrightarrow 7 - {e^{0,2t}} = 0 \Leftrightarrow t = 5\ln 7 \approx 9,7\).
Ta có bảng dấu của \(g'\left( t \right)\) như sau:
![]()
Dựa vào bảng trên ta thấy tốc độ tăng trưởng của virut sẽ đạt lớn nhất ở ngày thứ 10.
Lời giải
|
a) |
Đ |
b) |
Đ |
c) |
S |
d) |
Đ |
Ta có \(y = \frac{{ - {x^2} + x + 1}}{{x + 1}} = - x + 2 - \frac{1}{{x + 1}}\) có đạo hàm \(y' = \frac{{ - x - 2x}}{{{{\left( {x + 1} \right)}^2}}} = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 0}\\{x = - 2}\end{array}} \right.\)
Khi đó ta có bảng biến thiên:

(a) Đúng: Hàm số đồng biến trên mỗi khoảng khoảng \(\left( { - 2, - 1} \right)\) và \(\left( { - 1,0} \right)\)
(b) Đúng: Hàm số có hai điểm cực trị.
(c) Sai: Mặt khác \(y = 0 \Leftrightarrow - {x^2} + x + 1 = 0\,\,\,\left( * \right)\)
Vậy phương trình \((*)\) luôn có hai nghiệm phân biệt. Hay \((C)\) luôn cắt \(Ox\) tại hai điểm phân biệt.
(d) Đúng: Tiệm cận xiên của đồ thị là \(y = - x + 2\) nên đi qua điểm \(A\left( {1;2} \right)\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.



