Câu hỏi:

28/10/2025 12 Lưu

Một chiếc xe đang kéo căng sợi dây cáp \(AB\) trong công trường xây dựng, trên đó đã thiết lập hệ toạ độ \(Oxyz\) như hình vẽ dưới với độ dài đơn vị trên các trục tọa độ bằng \(1\;m\). Tìm được tọa độ của vectơ \(\overrightarrow {AB} = \left( {a;b;c} \right)\). Khi đó tính \(a + c\)
Một chiếc xe đang kéo căng sợi dây cáp \(AB\) tro (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có: \(\overrightarrow {OA}  = 10\vec k \Rightarrow A\left( {0;0;10} \right)\) và \(OH = OB.\cos 30^\circ  = \frac{{15\sqrt 3 }}{2}\); \(OK = OB.\cos \left( {90^\circ  - 30^\circ } \right) = \frac{{15}}{2}\)

\[ \Rightarrow {\rm{ }}B\left( {\frac{{15}}{2};\frac{{15\sqrt 3 }}{2};0} \right) \Rightarrow \overrightarrow {AB}  = \left( {\frac{{15}}{2};\frac{{15\sqrt 3 }}{2}; - 10} \right)\]. Vậy \(a + c = 2,5\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Tốc độ tăng trưởng của virut được tính theo hàm số \(y = p'\left( t \right) = \frac{{1120.{{\rm{e}}^{0,2t}}}}{{{{\left( {{{\rm{e}}^{0,2t}} + 7} \right)}^2}}}\), \(t \ge 0\).

Xét hàm số \(y = g\left( t \right) = \frac{{1120.{{\rm{e}}^{0,2t}}}}{{{{\left( {{{\rm{e}}^{0,2t}} + 7} \right)}^2}}}\), có \(g'\left( t \right) = \frac{{224.{{\rm{e}}^{0,2t}}\left( {7 - {{\rm{e}}^{0,2t}}} \right)}}{{{{\left( {{{\rm{e}}^{0,2t}} + 7} \right)}^3}}}\).

\(g'\left( t \right) = 0 \Leftrightarrow 7 - {e^{0,2t}} = 0 \Leftrightarrow t = 5\ln 7 \approx 9,7\).

Ta có bảng dấu của \(g'\left( t \right)\) như sau:

Sự tăng trưởng của một loại virut được xá (ảnh 1)

Dựa vào bảng trên ta thấy tốc độ tăng trưởng của virut sẽ đạt lớn nhất ở ngày thứ 10.

Lời giải

a)

Đ

b)

Đ

c)

S

d)

Đ

 

Ta có \(y = \frac{{ - {x^2} + x + 1}}{{x + 1}} =  - x + 2 - \frac{1}{{x + 1}}\) có đạo hàm \(y' = \frac{{ - x - 2x}}{{{{\left( {x + 1} \right)}^2}}} = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 0}\\{x =  - 2}\end{array}} \right.\)

Khi đó ta có bảng biến thiên:

Cho hàm số \(y = \frac{{ - {x^2 (ảnh 1)

(a) Đúng: Hàm số đồng biến trên mỗi khoảng khoảng \(\left( { - 2, - 1} \right)\) và \(\left( { - 1,0} \right)\)

(b) Đúng: Hàm số có hai điểm cực trị.

(c) Sai: Mặt khác \(y = 0 \Leftrightarrow  - {x^2} + x + 1 = 0\,\,\,\left( * \right)\)

Vậy phương trình \((*)\) luôn có hai nghiệm phân biệt. Hay \((C)\) luôn cắt \(Ox\) tại hai điểm phân biệt.

(d) Đúng: Tiệm cận xiên của đồ thị là \(y =  - x + 2\) nên đi qua điểm \(A\left( {1;2} \right)\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \[\mathop {\min }\limits_{\left( { - 3;5} \right]} f\left( x \right) = - 3\].             
B. \[\mathop {\max }\limits_{\left( { - 3;5} \right]} f\left( x \right) = 2\]. 
C. \[\mathop {\max }\limits_{\left( { - 3;5} \right]} f\left( x \right) = 7\].                            
D. \[\mathop {\min }\limits_{\left( { - 3;5} \right]} f\left( x \right) = - 5\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP