Bảng biến thiên trong hình dưới bên dưới của hàm số nào dưới đây?

Bảng biến thiên trong hình dưới bên dưới của hàm số nào dưới đây?

Câu hỏi trong đề: Bộ 20 đề thi Giữa kì 1 Toán 12 có đáp án !!
Quảng cáo
Trả lời:
Chọn D
Bảng biến thiên đã cho có dạng của hàm số bậc ba nên loại các đáp án B,
Do \(\mathop {\lim }\limits_{x \to + \infty } y = - \infty \) nên hệ số \(a < 0\) nên loại đáp án
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn hệ trục tọa độ \(Oxyz\) sao cho điểm xuất phát là gốc \(O\) như hình vẽ trên.
Khi đó tọa độ hai kinh khí cầu là \(A\left( {3;4;1} \right),B\left( { - 1; - \frac{3}{2};\frac{4}{5}} \right)\)
Gọi \(M\)là vị trí người quan sát và \(B'\left( { - 1; - \frac{3}{2}; - \frac{4}{5}} \right)\) là điểm đối xứng với \(B\) qua mặt phẳng \((Oxy)\).
Khi đó \(MA + MB = MA + MB' \ge AB' = \sqrt {{{\left( {3 + 1} \right)}^2} + {{\left( {4 + \frac{3}{2}} \right)}^2} + {{\left( {1 + \frac{4}{5}} \right)}^2}} \approx 7,03\,km\)
Dấu bằng xảy ra khi và chỉ khi \(M,A,B'\) thẳng hàng và \(M\) thuộc đoạn \(AB'\). Điều này luôn xảy ra.
Lời giải
Gọi \(x(\;cm);y(\;cm)\) lần lượt là bán kính đáy và chiều cao của hình trụ \((x,y > 0;x < 30)\).
Độ dài dải dây ruy băng còn lại khi đã thắt nơ là: 120 cm.
Ta có: \((2x + y) \cdot 4 = 120 \Leftrightarrow y = 30 - 2x > 0 \Rightarrow 0 < x < 15\).
Thể tích khối hộp quà là: \(V = \pi {x^2} \cdot y = \pi {x^2}(30 - 2x)\). Thể tích \(V\) lớn nhất khi hàm số \(f(x) = {x^2}(30 - 2x)\), \((0 < x < 15)\) đạt giá trị lớn nhất.
Ta có \({f^\prime }(x) = - 6{x^2} + 60x\);
Cho \({f^\prime }(x) = - 6{x^2} + 60x = 0 \Rightarrow x = 10\).
Lập bảng biến thiên ta thấy thể tích đạt GTLN là: \(V = \pi \cdot f(10) = 1000\pi \left( {\;c{m^3}} \right)\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


