Có ba lực cùng tác động vào một vật. Hai trong ba lực này hợp với nhau một góc 1200 và có độ lớn lần lượt là 10 N và 8 N. Lực thứ ba vuông góc với mặt phẳng tạo bởi hai lực đã cho và có độ lớn 6 N. Tính độ lớn của hợp lực của ba lực trên. (Làm tròn kết quả đến hàng đơn vị)
Câu hỏi trong đề: Bộ 20 đề thi Giữa kì 1 Toán 12 có đáp án !!
Quảng cáo
Trả lời:
Gọi \({\vec F_1},{\vec F_2},{\vec F_3}\) lần lượt là ba lực tác động vào một vật đặt tại điểm \(O\) như Hình.

Ta có \({\vec F_1} = \overrightarrow {OA} ,{\vec F_2} = \overrightarrow {OB} ,\overrightarrow {{F_3}} = \overrightarrow {OC} \).
Độ lớn các lực: \({F_1} = OA = 10\;N,{F_2} = OB = 8\;N\), \({F_3} = OC = 6\;N\).
Dựng hình bình hành \(OADB\). Theo quy tắc hình bình hành, ta có \(\overrightarrow {OD} = \overrightarrow {OA} + \overrightarrow {OB} \).
Suy ra \({\overrightarrow {OD} ^2} = {(\overrightarrow {OA} + \overrightarrow {OB} )^2} = {\overrightarrow {OA} ^2} + {\overrightarrow {OB} ^2} + 2\overrightarrow {OA} \cdot \overrightarrow {OB} \).
Mà \(\overrightarrow {OA} \cdot \overrightarrow {OB} = OA \cdot OB \cdot \cos (\overrightarrow {OA} ,\overrightarrow {OB} )\), suy ra
Dựng hình bình hành \(ODEC\).
Tổng lực tác động vào vật là \(\vec F = \overrightarrow {OE} = \overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} \).
Độ lớn của hợp lực tác động vào vật là \(F = OE\).
Vì \(OC \bot (OADB)\) nên \(OC \bot OD\), suy ra \(ODEC\) là hình chữ nhật.
Do đó tam giác \(ODE\) vuông tại \(D\).
Khi đó,
Suy ra
Do đó \(F = OE \approx 11\;N\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn hệ trục tọa độ \(Oxyz\) sao cho điểm xuất phát là gốc \(O\) như hình vẽ trên.
Khi đó tọa độ hai kinh khí cầu là \(A\left( {3;4;1} \right),B\left( { - 1; - \frac{3}{2};\frac{4}{5}} \right)\)
Gọi \(M\)là vị trí người quan sát và \(B'\left( { - 1; - \frac{3}{2}; - \frac{4}{5}} \right)\) là điểm đối xứng với \(B\) qua mặt phẳng \((Oxy)\).
Khi đó \(MA + MB = MA + MB' \ge AB' = \sqrt {{{\left( {3 + 1} \right)}^2} + {{\left( {4 + \frac{3}{2}} \right)}^2} + {{\left( {1 + \frac{4}{5}} \right)}^2}} \approx 7,03\,km\)
Dấu bằng xảy ra khi và chỉ khi \(M,A,B'\) thẳng hàng và \(M\) thuộc đoạn \(AB'\). Điều này luôn xảy ra.
Lời giải
Gọi \(x(\;cm);y(\;cm)\) lần lượt là bán kính đáy và chiều cao của hình trụ \((x,y > 0;x < 30)\).
Độ dài dải dây ruy băng còn lại khi đã thắt nơ là: 120 cm.
Ta có: \((2x + y) \cdot 4 = 120 \Leftrightarrow y = 30 - 2x > 0 \Rightarrow 0 < x < 15\).
Thể tích khối hộp quà là: \(V = \pi {x^2} \cdot y = \pi {x^2}(30 - 2x)\). Thể tích \(V\) lớn nhất khi hàm số \(f(x) = {x^2}(30 - 2x)\), \((0 < x < 15)\) đạt giá trị lớn nhất.
Ta có \({f^\prime }(x) = - 6{x^2} + 60x\);
Cho \({f^\prime }(x) = - 6{x^2} + 60x = 0 \Rightarrow x = 10\).
Lập bảng biến thiên ta thấy thể tích đạt GTLN là: \(V = \pi \cdot f(10) = 1000\pi \left( {\;c{m^3}} \right)\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

