Câu hỏi:

28/10/2025 78 Lưu

Giám đốc một nhà hát A đang phân vân trong việc xác định mức giá vé xem các chương trình được trình chiếu trong nhà hát. Việc này rất quan trọng nó sẽ quyết định nhà hát thu được bao nhiêu lợi nhuận từ các buổi trình chiếu. Theo những cuốn sổ ghi chép của mình, ông ta xác định được rằng: nếu giá vé vào cửa là \(20\) USD/người thì trung bình có \(1000\) người đến xem. Nhưng nếu tăng thêm \(1\) USD/người thì sẽ mất \(100\) khách hàng hoặc giảm đi \(1\) USD/người thì sẽ có thêm \(100\) khách hàng trong số trung bình. Biết rằng, trung bình, mỗi khách hàng còn đem lại \(2\) USD lợi nhuận cho nhà hát trong các dịch vụ đi kèm. Hãy giúp giám đốc nhà hát này xác định xem cần tính giá vé vào cửa là bao nhiêu để thu nhập là lớn nhất.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi giá vé sau khi điều chỉnh là \(20 + x\)

Số khách là:\(1000 - 100x\)

Tổng thu nhập

\(f\left( x \right) = \left( {20 + x + 2} \right)\left( {1000 - 100x} \right) = \left( {22 + x} \right)\left( {1000 - 100x} \right) =  - 100{x^2} - 1200x + 22000\)

Bảng biến thiên

Giám đốc một nhà hát A đang phân vân trong việc xác định mức giá vé xem các chương trình được trình chiếu trong nhà hát. Việc này rất quan trọng nó sẽ quyết định nhà hát thu được bao nhiêu lợi nhuận từ các buổi trình chiếu. (ảnh 1)

\[\mathop {\max }\limits_{\left( { - 20; + \infty } \right)} f\left( x \right) = f\left( { - 6} \right)\]. Suy ra giá vé là: \(x + 20 = 20 - 6 = 14\) USD

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Giả sử cần giảm giá bán mỗi cái tivi là \(x\) triệu đồng \(\left( {x < 14} \right)\).

Do giảm giá bán mỗi cái 500 ngàn đồng thì số lượng tivi bán ra sẽ tăng thêm 10 cái mỗi tháng nên số lượng tivi bán ra tăng lên bây giờ là: \(\frac{{10x}}{{0,5}} = 20x\).

Khi đó, doanh thu một tháng của cửa hàng là \(\left( {100 + 20x} \right).\left( {14 - x} \right) =  - 20{x^2} + 180x + 1400\).

Xét hàm số \(f\left( x \right) =  - 20{x^2} + 180x + 1400\,\,\left( {x < 14} \right)\)

Ta có \(f'\left( x \right) =  - 40x + 180\); \(f'\left( x \right) = 0 \Leftrightarrow x = 4,5\).

Bảng biến thiên

Một cửa hàng trung bình bán được 100 cái Tivi mỗi tháng với giá 14 triệu đồng một cái. Chủ cửa hàng nhận thấy rằng, nếu giảm giá bán mỗi cái 500 ngàn đồng thì số lượng tivi bán ra sẽ tăng thêm 10 cái mỗi tháng.  (ảnh 1)

Từ bảng biến thiên ta thấy: Để doanh thu cửa hàng đạt cao nhất thì giá bán mỗi cái tivi là \(14 - 4,5 = 9,5\) triệu đồng

Lời giải

Gọi \(x(\;cm);y(\;cm)\) lần lượt là bán kính đáy và chiều cao của hình trụ \((x,y > 0;x < 30)\).

Độ dài dải dây ruy băng còn lại khi đã thắt nơ là: 120 cm.

Ta có: \((2x + y) \cdot 4 = 120 \Leftrightarrow y = 30 - 2x > 0 \Rightarrow 0 < x < 15\).

Thể tích khối hộp quà là: \(V = \pi {x^2} \cdot y = \pi {x^2}(30 - 2x)\). Thể tích \(V\) lớn nhất khi hàm số \(f(x) = {x^2}(30 - 2x)\), \((0 < x < 15)\) đạt giá trị lớn nhất.

Ta có \({f^\prime }(x) =  - 6{x^2} + 60x\);

Cho \({f^\prime }(x) =  - 6{x^2} + 60x = 0 \Rightarrow x = 10\).

Lập bảng biến thiên ta thấy thể tích đạt GTLN là: \(V = \pi  \cdot f(10) = 1000\pi \left( {\;c{m^3}} \right)\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP