Một vận động viên thể thao hai môn phối hợp luyện tập với một bể bơi hình chữ nhật rộng \(400\;m\), dài \(800\;m\). Vận động viên chạy phối hợp với bơi như sau: Xuất phát từ điểm \(A\), chạy đến điểm \(X\) và bơi từ điểm \(X\) đến điểm \(C\).

Hỏi nên chọn điểm \(X\) cách \(A\) gần bằng bao nhiêu mét để vận động viên đến \(C\) nhanh nhất ? Biết rằng vận tốc chạy là \(30\;km/h\), vận tốc bơi là \(6\;km/h\).
Một vận động viên thể thao hai môn phối hợp luyện tập với một bể bơi hình chữ nhật rộng \(400\;m\), dài \(800\;m\). Vận động viên chạy phối hợp với bơi như sau: Xuất phát từ điểm \(A\), chạy đến điểm \(X\) và bơi từ điểm \(X\) đến điểm \(C\).

Hỏi nên chọn điểm \(X\) cách \(A\) gần bằng bao nhiêu mét để vận động viên đến \(C\) nhanh nhất ? Biết rằng vận tốc chạy là \(30\;km/h\), vận tốc bơi là \(6\;km/h\).
Câu hỏi trong đề: Bộ 20 đề thi Giữa kì 1 Toán 12 có đáp án !!
Quảng cáo
Trả lời:
Đặt \(BX = x(\;km)\), ta có: \(AX = 0,8 - x(\;km)\);
\(XC = \sqrt {{{(0,4)}^2} + {x^2}} = \sqrt {0,16 + {x^2}} (\;km)\)
Xét hàm số:
\(T(x) = \frac{{0,8 - x}}{{30}} + \frac{{\sqrt {0,16 + {x^2}} }}{6} = \frac{1}{{30}}\left( {0,8 - x + 5\sqrt {0,16 + {x^2}} } \right)(0 \le x < 0,8).\)
Ta có: \(T'(x) = \frac{1}{{30}}\left( { - 1 + \frac{{5x}}{{\sqrt {0,16 + {x^2}} }}} \right),T'(x) = 0 \Rightarrow 5x = \sqrt {0,16 + {x^2}} \).
Bình phương hai vế phương trình ta được \(0,16 + {x^2} = 25{x^2} \Leftrightarrow x = \pm \frac{{\sqrt 6 }}{{30}}\). Vì \(0 < x < 0,8\) nên \(x = \frac{{\sqrt 6 }}{{30}}\).
Bảng biến thiên của hàm số \(T(x)\) là:

Vậy \(T(x)\) đạt giá trị nhỏ nhất bằng \(T\left( {\frac{{\sqrt 6 }}{{30}}} \right)\) khi
\(AX = 0,8 - \frac{{\sqrt 6 }}{{30}} \approx 0,718(\;km) = 718(\;m){\rm{. }}\)
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
\(y = {x^3} - 3x + 2 \Rightarrow y' = 3{x^2} - 3\)
Tiếp tuyến với \(\left( C \right)\) tại \(A,B\) có cùng hệ số góc và chỉ khi \(f'\left( {{x_A}} \right) = f'\left( {{x_B}} \right) \Leftrightarrow x_A^2 = x_B^2 \Leftrightarrow \left[ \begin{array}{l}{x_A} = {x_B}\left( L \right)\\{x_A} + {x_B} = 0\end{array} \right.\)
\( \Rightarrow A,B\)đối xứng nhau qua \(I\left( {0;2} \right)\) là tâm đối xứng của \(\left( C \right).\)
\(AB \bot d:x + y - 5 = 0 \Rightarrow AB:x - y + m = 0.\)
\(AB\)qua \(I\) nên ta có \(m = 2 \Rightarrow AB:x - y + 2 = 0.\)
Khi đó hoành độ \(A,B\)thỏa mãn phương trình
\({x^3} - 3x + 2 = x + 2 \Leftrightarrow \left[ \begin{array}{l}x = 0\;(L)\\x = \pm 2\end{array} \right. \Rightarrow A\left( {2;4} \right),B\left( { - 2;0} \right)\).
Lời giải
Gọi chiều dài của trang giấy là \(x\,cm\) ta có chiều rộng là \(\frac{{600}}{x}cm\).
Chiều dài và chiều rộng của phần in chữ lần lượt là \(x - 4\) và \(\frac{{600}}{x} - 5\)
Diện tích phần in chữ là \(f\left( x \right) = \left( {\frac{{600}}{x} - 5} \right)\left( {x - 4} \right) = 620 - 5x - \frac{{2400}}{x}\)
\(f'\left( x \right) = \frac{{2400}}{{{x^2}}} - 5 = 0 \Leftrightarrow x = \pm 4\sqrt {30} \)

Vậy diện tích lớn nhất của phần in chữ xấp xỉ 401 \(c{m^2}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.




